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ABSTRACT OF THE DISSERTATION

Experiments on Vortex Symmetrization in Magnetized Electron Plasma Columns

by

Ann C. Cass
Doctor of Philosophy in Physics
University of California, San Diego, 1998

Professor C. Fred Driscoll, Chair

Experiments are presented on vortex symmetrization in magnetized electron
columns, which follow the samé, 8) dynamics as two-dimensional, incompressible,
inviscid fluids. Fluid vorticity (plasma density) is measured directly using a phosphor
screen and CCD camera. The fluid has low dissipation (equivalent Re) ahd is
contained within free-slip cylindrical walls.

In freely evolving turbulence, a novel state called “vortex crystals” is observed to
form. Strong “clumps” of vorticity cease merging and form symmetric arrays within a
smooth background of lower vorticity. During vortex crystal “cooling”, the measured
chaotic vortex motion decreases by at least a factor of 6. The crystal state represents a

novel ordered meta-equilibria for near-inviscid 2D fluid turbulence.
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Measurements of the symmetrization of initially distorted vortices are also

presented. Vorticity perturbations of the foref® are applied to otherwise

axisymmetric monotonically decreasing vortices, and are allowed to evolve freely.
Essentially, we find that vorticity perturbations persist for long times due to effectively
undamped surface waves.

The long-lived waves are generalized versions of the surface waves found by
Kelvin for “top-hat” vortex patches. For many smooth vorticity profiles, Kelvin waves
propagate unchanged. For vortices with non-zero vorticity at a “critical radius”, waves
initially decay exponentially (and are properly called “quasimodes”); however, for
large amplitude perturbations, linear decay saturates with the formation of Kelvin’s
“cat’s eye” structures.

A new numerical method allows us to predict the frequency and radial mode
structure of linear waves on our measured vortices. The calculated modes agree well
with experimental measurements. For vortices with damped quasimodes, estimated
decay rates agree with measurements to within a factor of 0.4-1.5.

After 5-10 wave periods of exponential decay, vorticity filaments form Kelvin's
"cat's eye" structures. Within these "cat's eyes," trapped fluid moves in and out of

phase with the wave, modulating the wave amplitude at a "trapping frequency". The

measured frequency scalesfas] A,"?

, as predicted theoretically. The cat's eye
structure is stable, lasting for up to“f,, until the weak plasma dissipation "smears"

out the filaments. Thus, despite the inviscid decay process, we find that for damped or

undamped Kelvin waves, vortices remain asymmetric on inviscid time scales.
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CHAPTER |

INTRODUCTION AND SUMMARY

A. Introduction

Turbulent flows occur in a wide variety of physical systems, ranging from earth's
atmosphere to hot fusion plasmas confined in thermonuclear reactors [1, 2]. Although
there is no rigorous scientific definition of turbulence, a turbulent flow must exhibit
randomness in both space and time, excitations of many degrees of freedom, and
extensive mixing of fluid elements. Due to the complexity of the nonlinear interaction,
a comprehensive physical picture of turbulence is still elusive, and it remains “the last
great unsolved problem of classical physics,” as was dubbed by Richard Feynman.
Turbulence appears to behave differently from one system to another, depending on
the flow dynamics involved, as well as on the initial and boundary conditions. Modern
research has concentrated on finding universal properties that can provide a clear
physical understanding of the observed phenomena [3].

Under certain conditions, a three-dimensional physical system can be modeled by
neglecting one of the spatial degrees of freedom. For example, geophysical phenomena
such as mesoscale oceanic and atmospheric flows are approximately two-dimensional
(2D), due to the effects of earth's rotation and the relatively small vertical extent of the
flows [4]. In addition, the macroscopic behavior of strongly magnetized plasmas is

often effectively 2D, due to the “stiffening” effect of the confining magnetic field [5].



Other 2D flows include thin liquid films, cryogenic superfluids, and self-gravitating
disk galaxies [6].

Two additional flow properties, low viscosity and incompressibility, are also
important characteristics of the flows considered here. Low viscosity means that fine-
scale variations in the fluid velocity can evolve and persist without being dissipated by
the inherent “friction” between adjacent fluid elements. Many flows are effectively
incompressiblemeaning that the volume of a fluid element does not change as it
moves; water is an incompressible liquid, and many gas flows are approximately
incompressible.

The 2D dynamics of incompressible fluids has been studied for over a hundred
years [6]. The flows are characterized by the vorticity (i.e., local rotation) of the fluid,
and regions of strong vorticity (i.evortices) can be long-lived and can strongly affect
the flow evolution. In the inviscid limit, a 2D incompressible flow is simply the
advection of scalar fluid vorticity; for this reason, 2D turbulence exhibits some
intriguing features quite different from its 3D counterpart. For example, as the 2D
turbulence evolves, the kinetic energy of the flow tends to condense into large 2D
vortices, rather than being transferred to small spatial scales.

Freely evolving 2D turbulence is of particular interest, since the lack of external
forcing eliminates unwanted complications. Recently, insights on free relaxation have
been obtained through extensive analytical and computational studies, enabled by the
availability of high performance computers. Theorists have attempted to predict the
relaxed state of turbulence, based on statistical arguments and the quantities known to

be conserved by the flow. However, evidence indicates that one must also consider



long-lived dynamical structures in order to understand the final state [7].
Unfortunately, laboratory experiments are relatively few [8], because it is difficult to
devise a well-diagnosed, two-dimensional, experimental system with low dissipation.
A magnetically confined pure electron plasma column can be considered as two-
dimensional when the electron axial bounce motion is much faster thargthkeB*
drift” in the (r,8) plane perpendicular to the magnetic field. In this regime, the
perpendicular dynamics is governed by the Euler equation for 2D incompressible
inviscid fluids, with the electron density being proportional to the vorticity. Further,
the flow vorticity (i.e., electron density) can be directly measured with high resolution,
allowing detailed quantitative comparisons with theoretical predictions.
These magnetized electron columns provide excellent opportunities to study 2D

near-inviscid fluid dynamics and turbulence. The dissipation tmpe of vortex

structures is much longer than typical rotation tintgs allowing high Reynolds

numbers Re 1, t,=10" - 10 which are difficult to achieve in ordinary fluids.
For fine spatial scales or long times, plasma “viscous” [9] or diffusive effects [10]
become significant; however these a#in general modeled by the Navier-Stokes

equation.
B. Summary

Experimental results are presented on two related topics: the relaxation of
turbulence to novel “vortex crystal” states; and the inviscid decay of vortex surface

waves.



In Chapter Ill, we describe th@ovel vortex crystal states, a meta-equilibrium
which occurs during the free relaxation of the fluid system from a highly filamented
initial vorticity distribution [11]. Two-dimensional turbulence normally relaxes
through vortex merger and filamentation, with energy flowing to large scales and
enstrophy transferred to fine scales where it is eventually dissipated. Here, electron
plasma experiments show that this relaxation can be arrested by spontaneous “cooling”
of the chaotic vortex motions, leading to regular lattices of vortices within a uniform
background of weaker vorticity.

The vortex crystal states consist of 5-11 individual vortices each with vorticity 4-6

times the background vorticity, arranged in a lattice pattern which rotates with the

background. In plasma terms, rods of enhanced electron density & 10°cm™) are

maintaining self-coherence and positions relative to each other for several seconds,
while E x B drifting with a diffuse backgroundr(; = 2x1(cm™). Vortex crystal

states are repeatedly observed over a range of filament bias voltages, but the

characteristics of the initiah(r, &) required for these states to form are not yet

understood. One important characteristic of the plasma experiments is that there is
only one sign of vorticity.

Reduction of the chaotic advective motions, or “cooling” of the individual
vortices, is required to form the vortex crystal states. We characterize these vortex

motions by the average magnitude of the random velocities of the individual vortices,

\5V , relative to the rotating frame in which the mean discrete vortex velocity is zero.

The measurewv\ decreases a factor of 6 during the formation of the crystal,



whereas only slight cooling is seen for sequences which evolve to a single,
monotonically decreasing vortex.

It appears that the vortex cooling occurs due to an interaction between the
individual vortices and the boundary of the background vorticity. In the simplest
interaction, the vortices excite small amplitude surface waves on the background, and
these waves are damped by spatial Landau damping; in more complicated interactions,
nonlinear filaments are observed to form on the surface. These ideas are being pursued
theoretically by other researchers.

In Chapter IV, we discuss experiments on the inviscid damping of vorticity waves,
a mechanism which may be influential in forming the vortex crystal. We characterize

the evolution of inviscid vorticity perturbations varying as
ol (r,60,t) 0 A(t)&(r)sifmé - wt| on electron columns with sheared azimuthal
rotation. Coherent waves of vorticity are readily excited by perturbations distant from
the vortex, and we find that these waves ultimately persist for long times, even in cases
where resonant processes cause them to partially damp.

Starting with an axisymmetric plasma with vorticity profig (r), we apply
voltages on wall sectors to createva= 2 vorticity perturbationd?® , which then

freely evolves. Most of the perturbation remains coherent and is called the “discrete”

Kelvin wave or “diocotron” mode. Theory suggests [12] that the rest of the initial
perturbationd® (r) can be described as a superposition of “continuum modes”

which should then phase mix away. Surprisingly, we observe that almost all of



0@ (r) is the discrete mode, with typically 10% residual; this is because external

perturbations do not couple strongly to the continuum modes.

The discrete mode may persist for tens of thousands of wave periods, or it may be
a “quasimode” which damps due to an inviscid wave-fluid resonance. The measured
guasimode frequencies agree with theory predictions at the 10% level. More
significantly, the measured initial damping rates agree within a factor of 2 to 5 with the
predictions of “spatial Landau damping” [13], numerically calculated from the
measured] ,(r) .

The damping of even moderately large amplitude waves is strongly affected by
nonlinear effects. After exponential damping at early times, the mode amplitude
“bounces”, then asymptotes to a constant amplitude. Experimental images clearly
show that the damping and bounces are due to low density filaments peeling off and

eventually forming closed “cat's eye” structures. The measured amplitude-bounce (or
“trapping oscillation”) frequencyf,, scales with mode amplitudeas f, 0 A™?, as

expected with the orbits of fluid particles trapped within the cat's eyes.
Finally, we discuss the nonlinear effect of damping which occurs only when the
wave is large. This can be understood as the large amplitude wave modifying the

symmetric vorticity profiled,(r) , so that the resonant-layer decay can occur. In this

case, the damping process results in visually striking filaments outside the vortex.



CHAPTER I

Design and Operation of the CamV Apparatus

A. Overview

The CamV electron apparatus was designed and constructed to create and
magnetically confine electron plasmas, with CCD camera images diagnosing the 2D
(r,8) flows of electrons across the magnetic field. These flows cause rapid cross-field
transport of particles and energy. The plasmas can be thought of as “rods” of charge,
moving in 2D as an incompressible, inviscid fluid. Thus, they make excellent systems

on which to study 2D inviscid fluid dynamics.
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Figure 1. The cylindrical experimental apparatus CamV with phosphor screen/CCD
camera diagnostic.

Figure 1 shows the experimental device with the imaging diagnostic. Electrons
from a spiral tungsten filament are trapped in a series of conducting cylinders with
wall radius R, = 3.5 cm enclosed in a vacuum chamber (with base pressaOP

torr). The electrons are contained axially by negative voltag&8Y) on the two end

cylinders, and confined radially by a uniform axial magnetic field (typically



B, = 4kG), resulting in a confinement time of about 100 seconds. The trapped

electron column typically has density, < 7x10°cm™, radiusR, =1.5cm, and

axial lengthL, =50cm . The plasma Debye lengthAsg, > 3.32mm, much smaller

than the column dimensiong, and L.

The electrons have average kinetic enetg@mv,” = kT= 1eV and are

effectively collisionless, with collisional mean-free-path, = 3km and collision

frequencyu,, = 0.1sec” . Individual electrons bounce rapidly back and forth along the

magnetic field, ataratd, =v, / 2L , = 0.4MHz , averaging over argvariations.

Kinetic energy perpendicular tB, is bound up in cyclotron orbits which are fast
enough (f, =11GHz) and small enouglr(=5xm) so as to be ignorable.

Electric fields cause the electrons t& % B drift” across the magnetic field as an
effectively incompressible fluid. Typicdt x B rotation frequency at the center of the

plasma isQ, / 2n =180kHz . The 2D flow velocityv(r,&) flow of the electrons is
described by the 2D drift-Poisson equations, and the 2D electron der(sitg) will
be seen to be proportional to the flow vorticy(r,8) =0 x v (r,0)[Z.

At any desired time, the -integrated electron density(r, 8,t) is measured

(destructively) by dumping the electrons axially onto a phosphor screen, from which

the luminescence is imaged by a low-no&sE2x 512 pixel CCD camera. The shot-to-
shot variations in the initial profiles are small,..j.én/ n< 107, so the time evolution

can be inferred from a sequence of shots with differing hold times.
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Figure 2. 4-part and 8-part sector probes, together with applied voltages and receiver to
launch and detect m=2 perturbations.

B. Description of the Apparatus

The CamV electrode stack has 10 containment cylinders, giving a maximum

plasma length oL, = 60cm . Two of the electrodes are divided azimuthally for

sending and receiving waves: one electrode has 4 sectors, and the other has 8, as
shown in Figure 2. More generally, we are able to displace the colurtm &) or
compress it axially by applying voltages to the wall sectors, or to full electrodes.

The superconducting magnet has a horizontal room temperature bore 12 3/4 inches
in diameter and 68 inches long. Maximum field is 20 kG, constant with®% over a
length of 120 cm. The magnet enables scaling of electron plasma characteristics over

more than 2 decades in field, i.8.1 - 20 kG.



The source of the electrons is a spiral-wound filament of tungsten wire of radius

R; =1.2cm and resistancg; =1Q, heated with a sinusoidal currehf at
frequencyf, =16kHz. The ohmic voltage drop across the filamentjswhere
V, = I, Z; . The bias voltage at the center of the filamevy, is set independently.

For the quiescent injection normally used, the plasma is injected when the filament

current and voltage is positive, such that the filament voltdgeér) closely matches

the space charge potential of the plasme, V,, =V, +V, (r/ R,)? [14, 15]. Then

V, determines the local density,, (number/ cn) and/, determines the “line

density” of electrondN, = anz ny, (humber/cm-length). These voltages are chosen to
obtain the desired experimental parameters.

Alternatively, the plasma may be injected when the heating voltage is negative,
such thatv, =V, =|V,|(r/ R;)?. Originally, the vortex crystal state discussed in
Chapter Illl was found for only negative heating currents within a small range of bias
voltage {, = -5 - 0V). Now using a more emissive filament, vortex crystals are

obtained for positive and negative filament currents.

The system is operated in an inject/hold/dump cycle. During injection, cylinder a
of Figure 1 is grounded and cylinder c is biased negatively; then cylinder a is biased
negatively to cut off the incoming electrons and trap electrons within cylinder b.
During the hold phase, the trapped electrons may be transported across the field by
various processes. A variable time (t) after injection, cylinder c is gated to ground

potential, dumping the remaining electrons out that end.

10



Prior versions of these apparatuses had moveable and fixed collectors to measure
the dumped electrons at one or several particulgd { positions. The CamV
apparatus uses a phosphor to deternmg &) for all (r,8) on a single shot. The
entire inject/hold/dump cycle may be repeated up to 100 times per second, although
image acquisition requires several seconds.

Figure 1 includes a simplified schematic of this diagnostic system. About 30 cm
away from the dump cylinder lies a phosphor screen. The screen consists of a round of
guartz glass, 10.2 cm in diameter, coated with blue-green (P22B) phosphor. A thin
layer (thickness= 1500 A) of aluminum over the phosphor blocks the light generated
by the hot (1800°K) filament source. At the time of dump, the screen is biased to
15 kV, which axially accelerates the electrons and minimizes the distortions on the 2D
density distribution.

The intensity of the luminescence generated by the electron impacts is locally
proportional to the number of electrons collected per unit area. The light from the

phosphor passes through a vacuum window, and is focusedbBynam f 2 lens onto

the 512x 512 CCD chip of a camera. Two conventional optical filters further reduce
the reddish filament light, without degrading the blue-green phosphor light signal.

The phosphor and camera imaging system gives images with high resolution and
high dynamic range. Plasmas with density =10’cm™ over a column of length
50 cm give 5x 10 electrond cm? on the phosphor. Since these electrons are
accelerated to 15 kV, the phosphor gives off about 400 photons per electron, i.e.,

2x10"photons/ cni  from the phosphor. Taking camera collection efficiency into

11



account, the CCD receives about % 3 **hotons/cni from the phosphor,.i.e

9.1x 10' photons per pixel onto thB12x 512array imaging a phosphor area of

7cmx 7cm. The CCD has a quantum efficiency of about 8.7% for blue-green

phosphor light, giving 7 & TOelectrons/pixel. The CCD digitizer gain is 7.5

electrons/count, so the digitized signal is about 1000 counts per pixel. The aluminum
coating and blue filter reduce the “noise” from stray filament light to about 2 counts:
the blue-green phosphor was chosen to optimize this filtration. Thus, the system can
nominally give a 500:1 signal-to-noise ratio with a spatial resolution of

2R, / 512= Q 13nm.

The data is digitized to 16 bits by the CCD camera and is storecbd2a 512
array of CCD counts. In order to further remove the pattern of the background light
emitted by our filament, we subtract a “light-zero” from each data image, where the
light-zero is anotheb12x 512 camera image taken when no plasma was present. We
align each image spatially with crosses (called “fiducials”) scratched in the Al coating
of the phosphor screen, well outside of the plasma trap wall. Software identifies the
fiducials and shifts the light-zero in x- and y-pixels until it is spatially aligned with the
data image, and then subtracts the light-zero from the data image. In doing this
subtraction, we also adjust for any changes in filament light intensity or camera shutter
speed by applying an overall gain factor to the light-zero so as to minimize the signal

for r >R, (where there is no plasma).

The calibration from CCD counts to electron density is obtained from a separate

direct electrical measurement of the dumped charge. For this, we use a metal “end”

12



plate, rotated so as to completely cover the end of the electrode stack. In consecutive
shots, we dump the plasma onto the end plate and then onto the phosphor screen. We

measure the voltag€, induced on the collimator plate, separately measure the end
plate capacitance to groun@,,, and thereby get the total char@= C, V,. This

gives us a single factor which converts from CCD counts to number of electrons.

C. 2D E x B Dirift Dynamics

For plasmas in which the axial bounce frequency is large compared to the
azimuthal rotation frequency, low frequency collective phenomena (e.g., "diocotron”
modes, turbulence, and vortices) can be described approximately by bounce-averaged
E x B drift dynamics. We approximate the %18lectrons by a continuous 2D density

n(r,d,t), with velocity v(r, 8,t) arising due to the 2D electrostatic potential

¢(r,6,t). This (r,8) flow is then described by the 2D drift-Poisson equations,

02 @(r,8,t) = 4ren
on(r,o,t)

+vI;n=0
ot

1)
C .
v(r,gt)=—zx0, @.
B
where —e is the electron charge armds the speed of light.

The 2D drift-Poisson equations are isomorphic to the Euler equations for the 2D

flow of an incompressible and inviscid neutral fluid [12], [16-18]. These equations can

be written as
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Dhw=¢
a7

ot
v=2zx0,y,

+vD,{=0 )

wherey (r,8,t] is the stream function and(r,8,t) = (0, x v)[Z is thez-component

of the vorticity. Equations (1) and (2) are identical under the identifications

y-oe (3)

The conducting metal walls give boundary conditigg(R,,,8) = dg/ dQ\RN =0,

or ¢(R,,0) Dy (R,,0)=const At the wall, the tangential velocity
v, (Ry,8)0d¢! dr is finite, but there are n@ - forces, giving a true free-slip

boundary condition. In the present experiments, there are also typically no electrons
(vorticity) near the wall to complicate this boundary condition.

Thus, an initial distribution of electrons(r,8,t = 0) in a cylinder will have
vorticity ¢ [0 n, and will evolve the same as an initial distribution of vorticityin a

uniform fluid such as water. (Of course, this is only true to the extent the water
dynamics remains 2D in character.) For example, a single column of electrons in our
apparatus is equivalent to a finite area vortex in a bucket of water. If the vortex is

centered and azimuthally symmetric, it will have a stationary flow fie}d V. Qutside

the region of vorticity, the flow falls off as y[01/r . In the electron system, this/ r
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velocity profile arises naturally from Poisson's equation, siBcé&l1/r outside the
charge column.

One advantage of the electron experiments for testing 2D fluid theory is that the
electron system tends to remain 2D due to the magnetic field and the rapid axial
bounce motion. Another advantage is that the electron column has low internal

viscosity, and no boundary layers at the radial edge or axial end of the system.

Limitations to this isomorphism arise due to the discreteness of the individual
electrons, and due to the finite axial length of the confinement system. For fine spatial
scales or long times, plasma “viscous” [9] or diffusive effects [10] not contained in
Egns. (2) become significant; however, theseranan general modeled by the
Navier-Stokes equation. In particular, the effective viscosity ofiEheB flow
vanishes where the vorticity (i,electron density) vanishes. We emphasize, however,
that the results presented in this thesis are inviscid effects, occurring on time-scales
much less than non-ideal effects.
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CHAPTER Il

Vortex Crystals

D. Overview

In the free relaxation of turbulence in nearly inviscid 2D flows, energy flows to
long wavelengths, while enstrophy is dissipated on fine scales [19]. This leads to
inviscid invariants which are “fragile” or “robust” in the presence of weak viscosity
[20]. Relaxed states have been predicted based on maximization of entropy [21, 22] or
minimization of enstrophy [23, 24]; and surprising agreement with the minimum
enstrophy states has been found in experiments in some parameter regimes [25].

However, experiments [7] and computation [26, 27] demonstrate that long-lived
nonlinear vortices generally dominate the evolution, arising even from structureless
initial conditions. The vortices move chaotically due to mutual advection, resulting in
pairwise merger events and the formation of filamentary structures. A scaling theory of
“punctuated Hamiltonian” relaxation [28-30] based on point-vortex-like motions
punctuated by idealized mergers predicts power law dependences of vortex properties,
e.g., the number of vorticed, [0 t™*, and simulations have suggestéé 0. 75.

Contour dynamics calculations suggest more complicated merger and filamentation
events, and give different scaling exponents [31]. Electrolyte experiments with strong
dissipation have shown a range of exponents [8, 32].

E. Experiments

Here, we observe the free relaxation of turbulence in magnetized electron columns,
which evolve as near-ideal 2D fluids. The initial relaxation is nominally consistent
with punctuated Hamiltonian dynamics. However, we find that the relaxation can be
arrested by the formation of vortex crystals: for some initial conditions, the chaotic
motion of the vortices is “cooled”, no further merger events occur, and the vortices
form a rigidly rotating lattice within a uniform background of vorticity. The vortex
crystal state is observed to persist for up td tirnover times, until dissipation acts
on the individual vortices. Similar geometric patterns of point vortices have been seen
in rotating superfluids, where friction arises from interaction with normal fluid [33,

34].

In our case, the cooling appears to be an essentially inviscid 2D fluid process,
showing little 3D length dependence, and occurring in a few turnover times. We
speculate that the cooling is caused by the interchange of energy between the motion
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of individual vortices and the background vorticity, made irreversible by the inevitable
fine-scale dissipation or mode damping [12, 35, 36].

For the experiments described here, we initially trap a highly flamented electron
density distribution from the spiral electron source, rather than a smooth profile as
studied previously [25]. Many individual vortices then form due to local Kelvin-

Helmholtz instabilities, and this turbulent state evolves and relaxes by chaotic vortex
advection and mergers.

Vorticity (10%sec?)

Figure 3. Images of vorticity at five times for two sequences from similar initial
conditions. The red arcs indicate the wall radius.

Figure 3 shows the measured vorticif{r, 8,t) at five times for two slightly
different initial conditions; the two initial conditions are obtained from different
filament bias voltages. The upper sequence forms vortex crystals, whereas the lower
sequence relaxes rapidly to a monotonically decreasing profile. The vortex crystal
states consist of 5 to 11 individual vortices, each with vorticity 4 to 6 times the
background vorticity, arranged in a lattice pattern which co-rotates with the
background. In plasma terms, rods of enhanced electron density=(7 x 1Pcm™)

are maintaining self-coherence and positions relative to each other for several seconds,
while E x B drifting with a diffuse backgroundr(; = 2x1(cm™). Vortex crystal

states are repeatedly observed over a range of filament bias voltages, but the
characteristics of the initiah(r, 8) required for these states are not yet understood.
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Figure 4 shows the number of distinct vorticg, the total circulation in these
vortices » I,i=1,2,..N, , and the average vortex radilrs) for the two sequences

after distinct vortices form. The vortex counting algorithm is essentially that of
McWilliams [37]. We look for simply connected regions of constant vorticity greater
than the background vorticity, and count those larger than a minimum threshold.
Unlike McWilliams, we do not exclude elongated structures. In both sequences, the
unstable filamentary initial condition formN,, = 50 to 100 vortices of roughly equal
circulation, after whichN, initially decreases adl, 0 t™, with & =1. This relaxation

is generally consistent with the scaling of Refs. [28, 29]; the obseéveahge from

0.4 to 1.1 as the initial conditions are varied, with 0.8 being commonly observed.
Here, the merger, filamentation, and diffusion result in a decrease in the discrete
vortex circulation, roughly a3 I, 0t™° in Fig. 4.

In the evolution of the top sequence in Fig. 3, the relaxation is arrested by the
“cooling” of the chaotic vortex motions, with formation of vortex crystals by time
107, wherer, =170usis the bulk vortex rotation time. The diamonds in Fig. 4
show that 8 to 10 distinct vortices survive for abouf Q. When the surviving
vortices all have about the same circulatiopy the patterns are quite regular, as seen
at 607, in Fig. 3.

Figure 5 shows images of the dissipation of the vortex crystal state at later times.
By about 107, N, decreases to 1 as the individual vortices decay away in place.
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Figure 5. The “melting” of vortex crystals due to dissipative or diffusive effects
analogous to viscosity.

Note that asN, decreases, the remaining vortices re-adjust to a new rigidly rotating,
symmetrically spaced pattern.

The images at late times give only a “statistical” picture of the evolution. For
example, the Figure 5 images at 3500, 4000, and 450 not indicate that a vortex

fissured, but merely reflect the slight shot-to-shot variation observed|, ifor the
crystal evolution.

A better example of this shot-to-shot variation is demonstrated in Figure 6,
showing 4 shots at timB007 , repeated with the same initial condition. The images

have a “generic” pattern of 6 vortices around a central vortex, with small vortex
“defects” varying in number and position.
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Figure 6. Repeated images at 5Q0taken with identical initial conditions, showing
detailed differences in generically similar vortex crystals.

The measured integral quantities, shown in Figure 7, are consistent with 2D

inviscid motion on large scales and dissipation on fine scales. From the measured
n(r,8) we directly calculate the number of electrons per unit length(i.e. fluid

circulation T, ); the canonical angular momentum (fluid angular impulBg) the
electrostatic energy (fluid kinetic energyj ,; and the enstrophy, . These are
calculated, fromn(r,8) and ¢(r,8) as

N, Ejdzr n
Mot = (47rec/ B) N
P, = R,\,""[dzr P’ nln (4)

H(,JE—;RN‘Zder (@/ @) (0 1)
Z= Ry [ dr (W o)

The integrals are scaled by the total circulatigy and by the wall radiuRR, so as to
more generally characterize the evolution. Here, the characteristic degsatyd the
characteristic potentiag, is

n,=N,/ R/}

(5)
@o =eN,.

Experimentally, the circulation, angular momentum, and energy are robust
invariants. The circulation shows systematic variations of 10%, probably due to slow
variation of the filament emission and slow ionization of background gas
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whent > 0.1sec. This variation ofl",, does not significantly affect the scald¥)
orH,, since they are scaled by . The 5% rise inF, at late times indicates a slightly

broader column due to apparatus anomalies.
The maximum vorticityd . should also be conserved in ideal flow. The

max

measured, ..., plotted in Fig. 7, shows a 30% increase for the crystals sequence, but
no significant change for the monotonic sequence. The reason for this increase is not
understood; it may be due to filamentary structures=a which are not initially

imaged because they are smaller than the pixel size.
In contrast, the enstrophy, is a “fragile” invariant, and initially decays a factor of

2 in both sequences. For the crystals sequegges constant from 10 to IG ., at

which time the individual vortices decay in place.
Reduction of the chaotic advective motions of the individual vortices is required to
form the vortex crystal states; this “cooling” is shown in Figure 8. Here, the average

22



Fiot
SO0 BBO 0 & bbb 606 G0d b s 830553 $55LE T8

4x107 Py
PIOO 9O D0 0OP GO OO Sb b GDO IO b GBS DD TS |

6
10 H¢)

SO O S0P DD SPP DD PO D P VD PO O $9O PO ¢

5x107%

106

max

& Q o>
o 0@008000%“"00@ 0

¥ o
$883 $50 08 <P$¢#I¢++i ++1¢ $§§P<><>$§$<>
+ +£$

+ Ty + +
o + T 4F

9999 0 5x10% Zg

+, %%

+Q $$§ o
T 299999 299929 900904 00 |

10 < 1 10° 104
t/ Tq

Figure 7. Evolution of the robust invariants of total circulatiby , angular
momentumF,, and energyH ,; the maximum observed vorticity
fragile enstrophy invarianZ, for the two sequences.

and the

max’?

magnitude of the random velocities of the individual vortide%{ , Is relative to the

rotating frame in which the mean discrete vortex velocity is zero. The velocities are
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obtained from the potentiap(r, 8] calculated from the measuret(r,d) and
boundary conditiong(R,,6) =0. \cM is normalized to the fluid velocity at the edge
of the vortex, ., where \[, .= 27TR, /T ;= 5.5x 10 cm/ sec
The measuretV| decreases a factor of 6 betwe2mn, and1007  for the
crystals sequence, whereas only slight cooling is seen bé&fprel (and \5V\ =0 by
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Figure 8. Evolution of the average chaotic vorticig)v| of the vortices for the two
sequences, normalized My, = 2R/ T .= 55x 10cm / sec.

definition) for the monotonic sequence. The residw\ for t 21007, may indicate

incomplete cooling, measurement noise, or systematic errors such as uncertainty in the
position of the trap axis.

Figure 9 shows a selection of the symmetric crystal patterns which have been
observed. Apparently, there are many different “meta-equilibria” to which the system
can evolve under near-inviscid 2D dynamics. Experimentally, these meta-equilibria
appear to last “forever’£; =1seq, i.e., until plasma diffusive or viscous effects not
included in Eqns. (2) act to dissipate the individual vortices. The equilibria observed
when the vortices all have essentially the same circulation are closely related to the
minimum energy equilibria of point-vortices in a circular domain calculated by
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Campbell and Ziff [34]. When the vortex circulations differ substantially, the patterns
are less symmetric.
r/ f N

Figure 9. Selection of vortex crystal patterns obtained from initial conditions generally
similar to those of Fig. 3.

F. Discussion

Since the discovery of vortex crystals, much theory has been developed by other
researchers to describe the dynamics of vortex crystal formation and to predict the
final crystal state. A linear theory describes the inward radial motion of a single vortex
in a sheared background. Simulations of 2D Euler flow have produced vortex crystals,
indicating that cooling is a 2D effect. Theories of vortex cooling describe surface
waves of vorticity as carrying away the chaotic energy of the individual vortices.
Statistical methods have succeeded in predicting the final crystal pattern and
background vorticity profile. However, as yet, the vortex crystal state cannot be
predicted from statistics alone.

A linear perturbation theory has been developed to estimate the rate at which an
intense vortex moves up a background “hill” of vorticitl) , / d r [38]. Essentially,
the intense vortex located at radigsmixes the background fluid, flattening the local
vorticity gradient and increasing the background’s angular momerm%ﬂ. To
conserve the total angular momentum of the system, the intense vortex moves radially
inward. The rate of radial transpost=dr, / d t depends on how much fluid within a
radius p the intense vortex can “trap” around itself in the local sheé&, / d r. For
intense vortices of circulation, and radial extenR, linear theory predicts
a0(dl,/dr(dQ,/ dn™r, R™In(p). Simulations confirm this rate.

Interestingly, simulations show that intense “clumps” of vorticity move up hills of
vorticity at a much faster rate than deep “holes” move downhill.

Recent vortex-in-cell computer simulations support our belief that this cooling and
cessation of relaxation through mergers is a general 2D fluid effegtindependent
of the details of the weak fine-scale viscosity or dissipation. When initialized with
simple annular vorticity distributions from recent experiments, the simulations show
cooling and relaxation to crystal states at the same rate as experiments, with patterns of
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nearly the same vorticity distributions. The relaxation rate depends strongly on the
ratio of the circulation in the background to that in the strong vortices [39]. We
emphasize that two essential characteristics of this system are the non-zero total
circulation and the boundary of the background vorticity patch, which may not be true
for other numerical works. For example, hyper-spectral codes which follow evolutions
in Fourier space typically use rectangular repeating domains and zero total circulation
[26].

It appears that the vortex cooling occurs due to an interaction between the
individual vortices and the boundary of the background vorticity. A weak interaction
would be described as the excitation of surface waves on the background, and these
waves could be damped by the “spatial Landau damping” [12, 35, 36], discussed in
Chapter IV. For strong interactions and short wavelengths, this would correspond to
entrainment and mixing of low vorticity regions from the edge of the column. Some of
the experimental images suggest this latter process, and it has been clearly observed in
2D vortex-in-cell simulations. A similar process may cause negative (relative) vorticity
“holes” to become symmetrically situated, as observed in previous experiments [40].

A recent theory describing the vortex crystal states as “regional” maximum fluid
entropy states has been surprisingly successful in predicting the observed crystal
patterns and the vorticity distribution of the background [41]. The theory is based on
the premise that the background is well mixed by the intense vortices, but the fluid
within the vortices is not well mixed. It takes agputthe number and circulation of
the surviving vortices; the crystal state is described by maximizing the “regional” fluid
entropy of the system, rather than the global fluid entropy. Given the robust conserved
quantitiesl",, F,, and H , plus the numbeM and strength", of the strong vortices
which survive the early evolution, the theory predicts the position of the vortices in the
crystal and the background vorticity profig (r) . Agreement with experiment is
impressive. Two factors are used to characterize the crystal state: a geometric factor
describing the vortex pattern, and a factor describing the vorticity profile of the
background. During typical vortex crystal evolutions, the deviation of the predicted
crystal pattern from the measured pattern decreases by a factor of 10, concurrent with a
factor of 3 decrease in the deviation of the predicted background profile from the
measured profile. Thus during the formation of the vortex crystal, the system
approaches a “regional” maximum entropy state.

Although the background is well mixed, fluid trapped within the strong vortices is
not. One must assume the number of vortices in the final state; as yet, the final state
cannot be predicted from statistics alone. Nor can this system be adequately
approximated as point vortices punctuated by occasional merger events: the cooling
represents vortex motion which is non-Hamiltonian due to interaction with the
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background vorticity. In contrast, experiments on vortex dynamics without a
background of vorticity have shown frequencies and instability rates closely
corresponding with point vortex theory [42]. It remains to be seen how ubiquitous
these crystal meta-equilibria are, and the extent to which non-Hamiltonian dynamical
vortex cooling is significant in vortex dynamics even when crystal patterns do not
occur.
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CHAPTER IV

THE EVOLUTION OF VORTICITY WAVES AND PERTURBATIONS

G. Introduction

We present observations of the evolution of vorticity perturbations, or waves, on
nominally axisymmetric vortices with monotonically decreasing vorticity profiles
{,(r). Such vorticity perturbations occur spontaneously in turbulent flows when
nearby vortices deform otherwise axisymmetric vortices. In our experiments, we create
sinusoidal perturbations of the foref™®, with m=2. The evolution can then be
described as coherent waves with extended spatial eigenfunction vo&j¢ity
propagating ind at a single frequencg,, .

These waves are generalized versions of the surface waves analyzed by Kelvin [43]
for “top-hat” vorticity patches. The extension of Kelvin waves to large amplitudes (a
“V state”) was simulated by Deem and Zabusky using contour dynamics, and is well-
understood analytically [44]. For m=2, the V-state is just an elliptical vortex, rotating
at frequencyw . Known as “diocotron” waves in plasma physics, generalized Kelvin
waves have long been observed on monotonically decreasing vortices in experiments
with magnetized electron columns [45].

Traditional fluid theory has described small vorticity perturbations as a
superposition of “continuum modes” each of which essentially advects with the local

sheared flow. Integral quantities of the perturbed flow, such as the streamfunction

perturbationd ¢, are predicted to decrease in timeag [0t , wherea =1- 2

28



[46]; the vorticity perturbation is “sheared apart” as continuum waves “phase mix.”
However, we will see that the generalized Kelvin wave may persist for long times,
either because it is a “discrete” wave which is actually undamped, or because itis a
“quasimode” with damping suppressed by nonlinear effects.

The linear theory of Briggs, Daugherty and Levy [12] decomposes small
perturbations into a superposition of eigenmodes consisting of a countable number of
discrete waves and an infinite number of continuum modes. A collection of continuum
modes which is in phase initially will phase-mix over time, leading to the expected
algebraic decay. Under some circumstances, a band of continuum modes appears to be
a single “quasimode” which damps exponentially. However, the discrete waves persist
indefinitely, and thus may dominate the evolution.

The undamped discrete wave exists if the vorticity profilgr) is zero at the

“critical radius” r, where the fluid rotates at the wave phase velocity. For profiles with

non-zero vorticity atr =r_, linear theory [12] predicts that the small amplitude Kelvin

waves are “quasimodes” which decaya$'. This inviscid decay has been analyzed

for simple profiles{,(r) to obtain quasimode frequeney, and damping rate [47]

and has been observed in prior experiments [36].

We observe the exponential decay of quasimode amplitéges over the first 5
wave periods of the evolutions. Decay rajesre closely predicted by a computer

code which uses our measurég(r) and solves the linearized Euler equations [13].

The eigenmode method allows numerical calculations of the quasimode structures

[48], which agree well with the measured waves.
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Surprisingly, in our laboratory experiments, we do not observe any continuum
mode response. Even at early times, the discrete Kelvin wave is at least 10 times
greater in amplitude than the continuum modes, which are at most at the level of
experimental noise. Using our measuigr) , we numerically solve for the discrete
and continuum modes, and find that outside perturbations excite the discrete mode
much more strongly than the continuum modes. In essence, by its nature, the Kelvin
wave couples well with applied multipole fields.

Large vorticity perturbations complicate this linear damping picture. The
perturbations launched and detected in our experiments are always nonlinear in that
they never fully decay away. Aftés— 10 wave periods of exponential decay, the
guasimode amplitude “bounces” back up, and then oscillates about some intermediate
value. In essence, the wave decay halts because there is insufficient vorticity at the
critical layer to damp the total wave energy. Imageg ¢f, 8) show vorticity
filaments forming Kelvin's “cat's eye” structures. Within these “cat's eyes,” trapped

fluid moves in and out of phase with the wave, modulating the wave amplitude at a

“trapping frequency” which scales &g O A,"?. The final cat's eye structure is stable,

and lasts for up to 10r ., until viscosity “smears” out the filaments. Thus, despite the

inviscid decay process, we find that for damped or undamped Kelvin waves, vortices
may resist symmetrization.

A final limitation on applying linear theory demonstrated by our experiments is
that large vorticity perturbations may modify the profgdg(r) , even though this is

precluded in linear theory. Typically, large amplitude perturbations transfer vorticity
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radially outward past the critical layer. Evendif has{,(r.) = 0 at small amplitudes,

for large amplitudes, the perturbed vortex can exhibit inviscid damping and forms

“cat's eyes.”
H. Description of Experiments

The experiments start with a centered, azimuthally symmetric column of

electrons, i.e a centered, symmetric vortex well separated from the wall. Typical
electron densities are = 2 x 10° cm™, with typical column radiiR, =1 cm. The
vorticity is { =10°sec' , and the vortex rotation (turnover) time is

T, =4/ {=150usec. The electron density versus radius in this column can be
controlled experimentally, and several different vorticity profilg8) will be
presented.

We make this vortex non-symmetric by applyifgdependent voltages to part of

the containment wall. Two of the containing cylinders, labe&dnd S; on Fig. 1,

have cutout wall patches with 4- and 8-péHsymmetry, electrically isolated from the
cylinder frame. To excite an m=2 perturbation, we apply voltages to cyliSgén an

m=2 symmetric fashion (as indicated in Fig. 2) for one-half wave period of the m=2
discrete mode. The perturbation is imposed by applying (-5, +5, -5, +5) volts to the 4

azimuthal sectors of containment cylindgy for a duration of 55/sec. In the fluid
picture, this applied voltage changes the B velocity field from a symmetric flow

to an m-multipole flow which falls off liker ™ inside the cylinder. Thus a m=2 wall

voltage is analogous to an applied dipole flow field.
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This dipole flow field causes the initially symmetric vortex to become elliptical,
with an ellipticity controlled by the strength and duration of the applied voltage. The
applied voltage is then removed, and we study the free evolution of the asymmetric
vortex, i.e, the evolution of “waves” on the otherwise symmetric vortex. The
evolution is diagnosed through measurementsg @f 8,t, ) at timest; using the
phosphor/CCD camera imaging system.

In addition to destructively measuring(r, 8,t,) with the CCD camera, we also
non-destructively measure the far-field quadrupole moment of the perturbed wave
vorticity throughout the evolution. The perturbation induces image charges on the wall

sectors of the 8-part prob8,. For a m=2 perturbation, as indicated in Figure 2, we

combine signals from opposite sectors to detect wave amplitudes and frequencies.

I. Generalized Kelvin Waves

For “top-hat” vortices with vorticity profile

{o(r) =4, <R,
0, r=2R,

where R, is the vortex radius, Kelvin linearized the Euler equations in an infinite

(6)

domain. In polar coordinates, with

{(r,0t)=,(r)+o{(.01)
Yr,0)=¢,)+oy.61),

the linearized equations are

(7)
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+Q, (1)
ot r dr 06 ®)
(32 L1001 (32
—+ = oY = o
[ r z?r re 092] v=0c
whereQ,(r) = ¢ ,(r) /r. Solving for perturbations of the form
5Z(I’,9,t): <((m) (r)eimﬁ—iw(m)t (9)
5(//(|’,0,t) - w(m) (r )eime—iw(m)t,
the linearized equations are
[=ma, (n] ™+ e g =g
10
o> 19 msz(m)_g(m) (10)
][o"r ra v ][
Kelvin found surface waves at the vortex edge [43] with wave structure
&M (r)05(R)), (11)
propagating ind with frequency
w™ = Z—zo(m—l). (12)

Later work included a free-slip wall at= R, [49]: the Kelvin wave remains a delta-

function perturbation on the surface of the vortex patch, but the frequency is shifted

slightly, as

W™ =<2 ((m-1 +(%)2"‘]. (13)
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A slightly smoothed top-hat vortex witR, = 0.3 and R, =1.0 is plotted in Fig. 10
(top).
Here, we investigate Kelvin waves on more genéidlr) . The vortices

considered are monotonically decreasing monopoles. Two examples are shown in

_ 4

Figure 10, namely wheré, (r) =e R [1-(r/ R,)"] (Fig. 10 middle) and

_ 2

{,(r)=e R[1-(r/ R,)*] (Fig. 10 bottom).R, = 0.3 and R, =1.0 for both
profiles. These vortices create flow fields (), or equivalently, angular rotation
profiles Q,(r), given by

r r

Q,(n="eO =1 (g, (14)

O —y =

As early as 1880, Kelvin noted “a disturbing infinity” [50] in the linearized Euler
equations fore™® perturbations on vortices with nonzedg and d, / dr at critical
radii r_. The critical radius is where the fluid rotates at the phase velocity of the Kelvin

wave, defined by
W™ —mQ,(r,) =0, (15)
For profiles withd{, / dr |r # 0, modern linear theory [12] predicts that small

amplitude Kelvin waves decay &"*. In this inviscid process, resonant fluid is

transported across so as to flatten the local vorticity gradiedt, / dr|r . Thus the

wave decay ratg 0 d, / dr| .
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Figure 10. Model vorticity profileg,: smoothed top-hat, exponential with power 4,

and exponential with power 2 (gaussian). The arrow indicates the critical
radiusr, for m=2 Kelvin waves on each vortex.
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For top hat profilesy, is easily calculated and is always outside the vortex; that is,
Ry > r.> R, . In this simple casey = 0. In Figure 10 (top), the arrow indicates the
critical radiusr, = 0.42 for the m=2 Kelvin wave.

For more generaf ,(r) , such as those plotted in the middle and bottom of Figure
10, r, may fall within the vortex,r, <R, . We use a numerical method described in

Section E to solve for the m=2 Kelvin wave on generalized profiles. For the middle

and bottom profiles we find, = 0.415andr, = 0.52, respectively. For the middle

profile, the decay ratg / «, of so-called quasimodes i/ «,= 0.01; the Kelvin

guasimode would thus exhibit exponential decay, decreasing in amplitude by one
factor ofeeveryN =,/ 27y =16 cycles. For the gaussian profile from Figure 10

(bottom), we findy / «, = 0.4, so quasimodes decay in less than one wave period;

here, it is questionable whether there is much utility in speaking of a quasimode. This
agrees with the rapid generation and phase mixing of vorticity filaments noted in
simulations using a gaussian profile by Bernoff and Lingevitch [51]. In this work, no
wave-like behavior was apparent, and the focus was on the time scale in which these

fine scale filaments were dissipated by a viscous “shear-diffusion” mechanism.
J. Experimental Results

One set of wave experiments utilizeddasymmetric vortex with the strongly

peaked vorticity profiled,(r) and Q, (r), shown in Figure 11 (top).
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Figure 11. The measured vorticity, and angular rotatioif2, for a vortex with weak
wave damping. Also shown is the initial m=2 vorticity perturbation
d{(r,t =0) (dashed) and the measured discrete eigenfundtj6hi (solid).
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Figure 12. Images of the total vorticig(r,,t) at five times after a m=2 perturbation
was applied to the vortex of Figure 11.

An elliptic perturbation imposed on this vortex is observed to propagate around the
vortex as an undamped wave. This “discrete diocotron” wave is the generalization of
Kelvin waves on top-hat vortex patches to waves on smooth vortex prdfjles .

Figure 12 shows the measured fluid vorticity at 5 times after the wall voltage is turned
off. The firstimage shows the initial elliptical distortion of the vortex in response to
the perturbation. Images at later times demonstrate that this elliptical wave of vorticity
propagates essentially intact, at frequerfgy= «, / 211 = 9. 25 kHz The times in Fig.

12 are scaled to the wave periog =1/ f.

38



We analyze the measured perturbation in terms of Fourier components, as

J(rot)=4, )+ > 00™ ¢ 1)e™. (16)

m=1,2,...

In this paper we will consider only applied m = 2 perturbations and m=2 responses of

the vortex, so we do not write the superscript (2). The m=2 respddsget) is

obtained from the measuredr,4,t) as

S(rt)=0¢? @)= zjnd 87, 01)e?’. (17)

The initial m=2 perturbation from the first image of Fig. 1&{ (r,t = 0), is plotted as
the dashed line in Fig. 11 (bottom).

The measured images determine the radial prcfif€°(r) of the propagating

“diocotron” or “Kelvin” wave, as well as the wave frequenay, . We obtainé,“*(r)
by fitting o (r,t) measured at 5 times during 1/2 wave period to the propagating

wave functional form

(1 1)=&, (r)e e”. (18)

We find w, / 21 = 9.25kHz, the same as measured in wall signals. The wave profile
&,7®(r) thus obtained is plotted as a solid line in Fig. 11 (bottom); the error bar shows

the typical uncertainty of the fit. The wave profilg,“*(r) is essentially the same as
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Figure 13. The measured vorticiy, and angular rotatio, for a vortex with strong
wave damping. Also shown is the initial m=2 vorticity perturbati@f(t = 0)

(dashed); and the measured quasimégde’ (solid).
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the initial perturbationdd (r,t = 0), indicating that only one wave was excited. The

unique character of this “discrete” mode compared to the multitude of “continuum”
modes will be treated in Section E.

The fit to the data givey = 0, as the wave is observed to stay at the same

amplitude for the 10 wave periods of detailed observation. Other observations show
that these waves persist for hundreds to tens of thousands of wave periods.
This wave does not decay because there is essentially zero vorticity at the critical

radiusr,, where the wave is resonant with the background flowis determined from

Gy = ML, (1), (19)
and is plotted as a dashed linerat=1.28cm in Figure 11.

In contrast, when the initial vortex has substantial vorticity at the critical radius,

the wave is observed to decay with time. In this case, theorists prefer to call the wave a
“guasimode.” Linear theory suggests that the wave will decag &s but nonlinear

effects generally cause the wave amplitude to oscillate, after which the damping

ceases, with the wave persisting at some finite level.

This inviscid damping is exhibited by the vorticity profil&,(r) and resulting
rotation profile Q, (r) shown in Figure 13 (top). Here, a 9 volt m=2 perturbation
applied to the wall sectors for 3@8seccreates the elliptical distortion, the evolution of

which is shown in Figure 14. The dashed circle indicates the position of the critical

layerr, .
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Figure 14. Images of the total vorticig(r,8,t) at five times after a m=2 perturbation

was applied to the vorte¥, of Figure 13. The dashed circle indicates the
location of the critical layer, .

Now the elliptical vortex generates filaments of vorticity at radiysand these

filaments rotate somewhat more slowly than the core. By several wave periods, these
filaments wrap up and link, trapping fluid particles in nonlinear Kelvin's “cat's eye”

structures. The cat's eye structure then persists in form for thousands of wave periods,

slowly dissipating only due to non-ideal effects.
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Using the fit described earlier, we determine a quasimode wave pﬁaﬁ’l%(r),
plotted solid in Fig. 13 (bottom), and a wave frequencyfpf=15. OkHz , confirmed

by wall signals. The fit to the first 2 wave periods also determines a damping
coefficient of y / w, =3.5x 10°.

The quasimode amplitude first damps exponentially, then “bounces” due to
“trapping oscillations,” then asymptotes at a finite level. To measure this, we

determine the quasimode amplitudg(t) which best describes the m=2 component of

measured imagé{ (r,t), as

32 (r.t)= A, (1) £7°(), (20)
with the wave profile£,*®(r) already determined by the fit to early-time data.

Specifically, at each time t we determine the single numAgwhich minimizes the

difference betweerh, (t)fqexp(r) and the measured( (r) ; given the relatively noise-

free image data, this number is determined with high precision.

Figure 15 shows that the quasimode amplituggt) first decreases exponentially

to about 55% of the initial amplitude, thémcreasedo 90%, then oscillates again; the
wave eventually asymptotes at about 75% of the initial amplitude.
This inviscid decay and oscillation can also be seen with an independent measure

of the wave amplitude, namely the m=2 (quadrupole) compo@g(it) of the flow

field induced at the wall,
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Figure 15. Evolution of the quasimode amplitudg and the quadrupole mome®, ,
showing initial exponential decay followed by amplitude bounces.
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wherex’ andy’ are the coodinates in a frame with origin at the vortex center and axes

parallel to the ellipse's major and minor axes. The measQgd) shown in Fig. 15
agrees in all essential aspects with the measuygd)), although the calculation d®,
has considerably more noise, due to imaging anomalies.

We note that the measured quasimode maintains the same radial ﬁg&ﬁ‘i(«e)

everywhere except at the critical radius, even as the amplitude oscillates with time.

Figure 16 shows the measured vorticity perturbatidggr,t) (solid curve) and
A,(t) £,7°(r) (dashed curve) at the 5 labeled times in Figs. 14 and 15. The quasimode
shrinks and grows proportionally at all radii, except for the weak filamentary
perturbation at, . Thus, wave damping isot effected by vorticity atr, getting out of
phase with the core perturbation and merely canceling the quadrupole moment of the
far field. Rather, the vorticity at, perturbs the flow in the vortex so as to cause the
ellipticity of the vortex core to decrease.

In the sequence described by Figs. 14, 15, and 16, when the “cat's eyes” form,
linear damping theory no longer gives an adequate description. Fluid particles
executing trapped orbits move in and out of phase with the core, modulating the

quasimode amplitudé\, (t) at the “trapped” orbit frequency,, . For the data of Fig.

15, we find f,, = (535usec)* = 1.9kHz . We have measured the dependence of this

45
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Figure 16. The measured m=2 vorticity perturbati@fi(r,t) (solid) compared to the
quasimode contribution®, (t) £,°°(r) (dashed curve) at the 5 marked times
during the evolution shown in Figure 14.
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trapped orbit frequency on quasimode amplitude, represented by the quadrupole
moment in Figure 17.

Here, the data represented by squares is obtained from sequences of images such as
Fig. 15; and the data represented by x's is obtained from the amplitude of image

charges induced on the wall sectors. Sigel] A, we find that the data is roughly

described byf, [ Aql’ ? as predicted by theory. This scaling is consistent with

trapping theory, with the dynamics shown in Fig. 14, and with the experiments of

Pillai and Gould [36].
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Figure 17 The trapping oscillation frequendy versus quadrupole momeg,
measured from wall signals (x’s) and images (squares).
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Ultimately the mode amplitude settles to 75%Af(t = 0) . Within a width Ax

around the critical layer, vorticity shifts so as to flatten the lo@adveraged gradient
d{,/dr \r . Once the vorticity gradient is flattened, the damping (or bouncing) stops.
Thus, if a quasimode has sufficient amplitude initially, it may persist indefinitely after
flattening the vorticity profile at the resonant radius.

One further limitation to the linear wave perspective is that large amplitude

perturbations may exhibit inviscid damping and cat's eye formation even when

outside the initial vortex; this is because the large amplitude perturbation modifies

1.0 | - L 0.01
So |

O
0 r (cm) e 25

Figure 18. The measured theta-averaged vorti€jtyvith a large elliptical
perturbation (dashed), compared to the profilewith no perturbation (solid).
The edges of the two profiles are also shown with a y-axis scale of 0 to 0.01.
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{,(r). Figure 18 shows a profil&€,(r) on which the discrete mode propagates
essentially undamped, becauggr,) = 0. When we distort the vortex to an ellipse
with minor-to-major axis aspect ratid = b/ a= 0.9, filaments are observed to form
from the ends of the ellipse at. The 8-averaged vorticity profile/ (r) of the
ellipse, shown in Fig. 18, extends further in radius tlgg(r) . Of course, this profile
modification is outside the domain of linear theory, where all perturbations vary as
€™ and thus make no change in tBeaveraged profile present.

Finally, Figure 19 graphically illustrates a large-amplitude wave with fully formed
cat's eye structures. This state was obtained by continuously driving the m=2 wave for

approximately 750 wave periods. As the wave became large, the vorticity distribution
extended ta,, and filaments formed. However, the continuously driven wave
remained large, and the net effect of the filaments was to flatted theeraged

vorticity distribution aroundr, . The flow shown in Fig. 19 is essentially stationary in

the rotating wave frame, and is observed to persist for more than 3000 wave periods,
after which non-ideal viscous or diffusive effects cause the filaments to broaden and
fill in the cat's eyes structure. We note that stationary states essentially identical to Fig.

19 have been obtained in point-vortex simulations of a simfldr) [52].

49



100.

©

Vorticity (10%sec?)

=

Figure 19. Image of (r, &) after continuously driving the m=2 wave for 50 ms. The
nonlinear, long-lived cat’s eye flow structures are clearly visible.

K. Eigenmode Analysis

Inviscid wave damping can be understood in the linear amplitude regime by
decomposing the vorticity perturbation into independent eigenmodes. In essence, the
damped wave is a quasimode consisting of a group of undamped eigenmodes; the
observed damping results from a de-phasing of the eigenmodes, each of which
propagates at a slightly different frequency.

The theory is simplest for a monotonically decreasing vortex prdfile) , i.e.,
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<0 for O<r<R,,

Ado(r)
dr (22)
{,(r)=0 for r>R,.

For simplicity, we focus on the discretized eigenmode analysis, wherein the
continuous radial variableis described by a grid, = jA, with j =0,1,..N,, and
A =R,/ N,.However, for notational clarity we display continuous integrals rather
than discretized sums. Each azimuthal Fourier component m is treated separately, and
we are interested only in the m=2 component, dendige 6 @ .

The free evolution of an arbitrary initial single-m perturbation can then be

decomposed as

S7(,0)= LA D& ()€™ + A (.8, (r)e™™. (23)

The sum represents the contribution of the = R, / A “continuum” modes with
frequenciesw, = mQ,(r,) spanning the range of fluid rotation rates from the center to
the edge of the vorticity distribution. The second term represents a possible “discrete”
mode, with resonant radius outside the vortex. Wije¢r) extends past the critical
radiusr,, there is no discrete mode.

Together, these modes form a complete, orthogonal set, with orthogonality

relations

dzo)-l dzo

(& &)= jdrr( EMEM=AYrS] '1fk(r)fk<r) O

(24)
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The modes are solutions of the linearized 2D Euler equations,

[w—on(r)]fk+rd“Jg(rr)ﬁ(r)rdr— (25)
where
()= 1 &)= 5y (26)
IR TR,

is the Green's function for a free-slip circular boundary atR, . Note that any
physically valid perturbation had{ (r) =0 for r >R, , so we need not consider
eigenfunctionsé, with N, < k< N,, which are non-zero at any radius> R, .
Figure 20 shows the eigenvalues and selected eigenfunctiog$ oy from Fig.
11, where we observed an undamped wave. Hee= 400. The eigenvaluess, / m
for each of theN, continuum eigenmodes are plotted as plus signs in Fig. 20 (top);

they are seen to overlay the curve@f(r). We plot continuum mode eigenfunctions

¢, (r) for k=45 and k=80 in Fig. 20 (bottom). Note that the continuum eigenfunction

consists of positive and negative spikes localized abcut, for which
mQ,(r.) = «,, with some additional “wings”. The discrete eigenvalag,,

representing the observed undamped wave discrete mode, lies outside of the

continuum of rotation frequencie{Qom”,Q m'”] within the vortex. The discrete mode

eigenfunction has an extended radial structure which is closely approximated by
r™d{,/dr. Itis essentially a generalized Kelvin mode on a monotonically

decreasing vortex.
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Figure 20. The calculated continuum eigenvalugsfm (crosses); selected

eigenfunctionsé, (lower curves); measured wavg®® (dashed); and
excitability X, (diamonds) for the measured vortex of Figs. 11 and 12.
N,, =400 and the dashed vertical line marks the critical lager
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The measured wave structufg®®(r) is plotted dashed in Figure 20 (bottom), and
is well described by the discrete mode predicted from linear thépfy) . Wave

frequencies agree to within the 10% calibration of our phosphor.

Interestingly, we find that wall perturbations excite no significant amount of
continuum modes: the contribution from continuum modes in Equation (23) is
generally a factor of 10 less (at the level of experimental noise), suggesting that
continuum modes do not couple to or cause significant flow perturbations outside the
vortex. We characterize the coupling of these modes to outside perturbations by

calculating a quantity called the excitabilit(, . The eigenmode excitability is the
amplitude to which a mode is excited from our wall perturbation [48]. The excitability

coefficient X, of eigenmode, is

Xk:<£k dr

rmt %> (27)

where( ) indicates the orthogonality integral of Equation (24). In Fig. 20, we plot
excitability X, as diamonds, and find that the discrete mode is predicted to be excited
to an amplitude 3 times higher than any continuum mode. In experiments on other
vorticity profiles, we have found that the discrete mode typically has excitability 10
times greater than any of the continuum modes. Thus, our experiments and linear
eigenmode theory agree that in general, the discrete mode couples strongly to

multipole fields outside the vortex, and, once excited, persists indefinitely.
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L. Analysis of Damped Quasimodes

The inviscid damping of wave perturbations on vortices where the vorticity is non-
zero at the critical radius, such &g(r) from Fig. 13, can be understood as the
“phase-mixing” of a group of continuum modes. The group of continuum modes will
be excited in phase by an external perturbation, and together constitute a “quasimode”
which appears to damp exponentially with time.

Figure 21 (top) shows the m=2 eigenvalues/ m calculated for our measured
{,. All the eigenfunctionsf, with k> N, are “invalid”, in that they have non-zero
amplitude where/, = 0. There is no discrete mode with resonant layer outside the
vortex. However, several continuum modggr) are “exceptional” in that they

exhibit the extended spatial structure similar to the discrete mode, with added spikes
on either side of their resonant radii. In Fig. 21 (bottom) we plot three adjacent
exceptional continuum modes, .i.& =150, 154 (marked as “center”), and 165, for

N,, =400. The experimentally observed damped quasimode has frequency

f, =15kHz =&,/ 2n. The dashed line is the measured quasimode structure

&,7%(r) from Fig.13 (bottom). The measured quasimode agrees well with the

extended radial structure of the exceptional continuum modes.

These exceptional continuum modes are also exceptionally strongly excited by
external perturbations: the excitability coefficierXs , plotted in Fig 21 (top) are seen
to be a factor of 5 larger than those for non-exceptional continuum modes are. Thus,

an external quadrupole flow perturbation will excite this packet of continuum modes,
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Figure 21. The calculated continuum eigenvalags m (plotted as crosses); selected

eigenfunctionsf, (lower curves); measured quasimode strucif)fe’

(dashed); and excitabilit, (diamonds) for the measured vortex of Fig. 13.
N,, =400and the dashed vertical line marks the critical lager
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and they will all initially be in phase. Since each continuum mode in this group
propagates at a different frequency, the modes will eventually lose coherence and
destructively interfere. This de-phasing and interference gives the experimentally
observed exponential damping of the quasimode.

In order to obtain a rough estimate of the damping rate, we fit the peak as a

Lorentzian of half-width half-max3, as
2
X(r):%ﬂsuc (28)
(r=r) +B
where 3, A, B, andC are parameters to be determined by the fit. One expects

theoretically that the de-phasing will result in an exponential dampingyratgiven

by

w, Q,(r,) dr

q

yth — ﬁ d£20 (29)

For the peak of Fig. 21, we obtaip” / w, =8x 107, whereas the observed wave
damping givesy / w, = 3.5% 10°. Measurements on two other vorticity profiles

{,(r) gavey/y" =0.73 and 1.5.

An alternate approach to the linear theory, first discussed by Briggs, Daugherty,
and Levy [12], predicts the asymptotic damping of an initial-value perturbation by
analytic continuation in the complex, Q)-plane. In this formulation, it is possible to
find “poles” at frequencies representing exponentially damped quasimodes. We use a

code written by Spencer and Rasband [13] which implements this method of complex
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integration, and find thay®™ / w, agrees with our measured/ «, to within a factor

of 0.2-1.8.
Finally, we note that several different exceptional waves can exists on vorticity

profiles with more than one distinct “edge.” The existence of multiple m waves was

first suggested by Rayleigh [53], for piecewise continugy§ ) , in which one wave

occurs per distinct, piece. Our experimentdl,(r), shown in Fig. 13, is much

smoother than Rayleigh's, but still possesses several distinct “shoulders,” including an

inner slope centered aroumd= 0.8 cm and an outer slope at=1.4cm. Sinusoidal

wall voltages atf =20 kHz excite a quasimodé. . on the inner slope with

inner

frequencyf, .., =21 5kHz and a quasimode on both inner and outer sloges,,

inner

with frequencyf_ .. =12.5kHz. Here again, the observed damped waves have spatial

outer

structure given by thé, (r) of “exceptional” continuum modes. When the damping is
weak due to smaltld, / dr\ . » the quasimodes may persist and be detected in

experiments; for strong damping, the continuum modes phase-mix rapidly and no

wave is detected in practice.
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