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The behavior of sidebands growing in the presence of a launched large amplitude wave in a
beam—plasma system is studied numerically. The large amplitude wave traps the beam and
both the upper and the lower sidebands become unstable. The behavior of the instability is
found to be dependent on a phase relationship that exists between the two sidebands and the
large amplitude wave. The essential features of the instability are well described by a simple
model in which the trapped electrons are replaced by a single particle oscillating in each well of

the large amplitude wave.

I. INTRODUCTION

It is known from both experimental and theoretical
work'~® that the nonlinear trapped particle state that results
from the trapping of electrons in a single wave is unstable to
the growth of sidebands. In the experiments’™ it was ob-
served that in the presence of a wave at frequency f; , whose
amplitude is sufficiently large to cause trapping, waves at
frequencies near f=f, +f, are unstable and grow from
noise. The bounce frequency associated with the nonlinear
trapped particle stateis f, = \[ek, E /m /2w, where k, is the
wavenumber of the large amplitude wave (LAW), E is the
peak electric field, — e is the electric charge, and m is the
electron mass.

An important simplification to the theoretical descrip-
tion of the sideband instability was given by Kruer, Dawson,
and Sudan® (KDS). They modeled the trapped particle state
as a single particle oscillating in a harmonic well [see Fig.
1(a)]. In the rest frame of the harmonic well, consider a
sideband traveling with velocity Av. A resonant interaction
occurs when the sideband, whose wavelength is A = 27/k,
travels a distance 4 during a particle bounce time; that is,
when Av/f, = A.Inthelabframe, if the well is traveling with
velocity v, = 2nf, /k,, the above resonance condition be-
comes

f=filk/k) £ /5. (H

The plus or minus sign appears because both upper and
lower sidebands can be resonant in this way; and, in fact,
both upper and lower sidebands are unstable. An important
feature of the KDS theory is that it fundamentally involves
both upper and lower sidebands.

The growth mechanism of the instability is rather inter-
esting and can be seen as follows. Let us assume that the
particle is at the bottom of the well, and that, in the lab
frame, the particle and the LAW are traveling with essential-
ly the same velocity in the + z direction. Figures 1(b) and
1(c) show the situation in the rest frame of the LAW. The
waves labeled A and B are lower and upper sidebands that
travel in opposite directions in the LAW rest frame. Let us
suppose that at # = 0 the sideband phases are as shown in
Fig. 1(b). Let us further suppose that there is a small veloc-
ity perturbation of the particle as shown. Since the particle is
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on the decelerating side of the well of sideband A, the parti-
cle gives up energy to sideband A and sideband A grows. The
particle is on the accelerating side of the well of sideband B.
The particle receives energy from sideband B and causes
sideband B to damp. However, since the particle is traveling
in the + z direction, it stays on the decelerating part of side-
band A (causing growth) for a relatively long time and on
the accelerating part of sideband B (causing damping) for a
relatively short time. When the resonance condition [Eq.
(1)] is satisfied, the situation at ¢t = 1/(2f,) is as shown in
Fig. 1(c). The particle is now moving in the — z direction
and is now on the accelerating side (causing damping) of
sideband A for a relatively short time and on the decelerating
side (causing growth) of sideband B for a relatively long
time. The net result is the growth of both sidebands. During
the sideband growth, the sidebands exert oppositely directed
forces on the particle. However, the net force is always such
that it causes an increase in the oscillation amplitude of the
particle. This causes the particle to spend an even longer
time on the decelerating parts of the sidebands and an even
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FIG. 1. Simple physical picture illus-
trating the sideband resonance con-
dition and the growth mechanism.
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shorter time on the accelerating parts which, in turn, causes
more growth. The source of free energy for the instability is
the electron kinetic energy in the lab frame. The electron
oscillations have negative energy. Thus, as the instability
proceeds, the electron oscillation amplitude increases, while
the lab frame electron kinetic energy decreases.

Since in the KDS approximation the replacement of the
trapped electrons by a single charged particle represents a
highly nonlinear state of the beam, one might expect cou-
pling between the waves, and, in particular, one might ex-
pect the sideband behavior to be sensitive to the relative
phases of the waves. This is indeed the case in the initial
growth region of the instability. By “initial growth region”
we mean the region from the beginning of the interaction toa
point several e-foldings away. Thus the physical situation
addressed by the KDS model is quite different from quasilin-
ear type interactions**® in which wave phases are unimpor-
tant and where the growth is determined solely by the time-
averaged velocity distribution function.

In the initial growth region one can represent the LAW
and the small amplitude upper and lower sidebands as a mix-
ture of an amplitude modulation and a frequency modula-
tion of the LAW. In the limits k /k, ~1, f,/f; €1, and in
the limit of low beam density, the KDS model predicts that
the three-wave system evolves to pure amplitude modulation
of the LAW. This effect can be studied more generally by
following the evolution of a phase relationship (which we
define later) among the three waves.

We have made a numerical study of the spatially grow-
ing sideband stability that occurs when electrons become
trapped in a LAW. This study makes use of a many electron
simulation and a simplified version of this simulation that is
obtained by replacing the electrons with a single charged
particle in each well of the LAW. This simplified situation is
a generalization of the KDS model in the sense that the
LAW potential well is sinusoidal rather than harmonic; the
particles need not make small displacements from the equi-
librium point; and the sideband amplitudes need not be
small. We have found that the sideband behavior depends
sensitively on a phase relationship that exists fora LAW and
an upper and lower sideband. When we replace the single
particle in each well of the LAW with the more realistic case
of many electrons trapped in each well, the essential features
of the instability remain the same.

The paper has been organized in the following manner.
In Sec. II we review the theory. In Sec. III we present our
numerical results, and in Sec. IV we state our conclusions.

il. THEORY

The nonlinear trapped particle state that we wish to
study is the one which results from the saturation of the low-
density, cold electron beam—plasma instability.® It can be
shown'? that the equations that govern the weak, cold beam—
plasma interaction are identical to those'! that describe the
weak cold beam-slow wave structure'” interaction in the
weak beam limit. Thus the theory presented below is appli-
cable to both of these systems.

We restrict ourselves to the case in which the resonance
condition, Eq. (1), can be satisfied for sidebands that have a
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large frequency separation, Aw, from the LAW. Namely, we
require that Aw(1 — v, /v, )L /v, > 1, where L is the length
of the plasma and v, is the group velocity at f;. When this
inequality is satisfied, an electron traveling at velocity v, is
in the plasma long enough to resolve the main wave from the
sideband. In the opposite limit the electron transit time is so
short that a single electron sees an essentially monochromat-
ic wave. In this case the KDS model is not appropriate, and
the modulational theory of DeNeef, Malmberg, and
O’Neil"? is the proper description.

The one-dimensional, many-wave theory of the weak,
cold beam-plasma interaction has been given previously,'
so we give only a brief summary here. The electron beam is
assumed to be monoenergetic and the spectrum is assumed
to consist of three waves. The interaction between the waves
and the beam is governed by three equations—Poisson’s
equation, Newton’s law, and an equation of charge conser-
vation. We define the following scaled parameters:

2 173
o 1

o= —— ~ , (2)
w, (ug/w,)ks, (Ie/dk),,,

b, = (1/9,) (tgko, /@, — 1), 3

where @, and u, are the plasma frequency and velocity of the
injected beam, w, and k,, are the frequency and complex
wavenumber of the nth wave, k,, is the real part of the
wavenumber, and € is the plasma dielectric function in the
absence of the beam. Physically, 5, corresponds to the
scaled linear growth rate of the nth wave in the case when it
is the only wave growing in the system. The fractional differ-
ence between the nth wave phase velocity and the injected
beam velocity is b,,7, . Using these parameters we define the
following scaled variables:

y=m(@/uy)z, 4)
$o = (@1/15) 2, (3
¢n(y’¢0) =W, (z/uo-—t), (6)
%=uo[1 +7’lq( ys¢0)]) (7)

V, (z,t) =451 Vod, (y)cos[ 4, ( yibo) — 6, () ]. (8)

Here, y and ¢, are independent variables and represent the
scaled distance and input electron phase. The subscript 1
corresponds to the large amplitude main wave. In the calcu-
lation each electron is assigned a unique value of ¢,
(0< ¢, < 27) corresponding to its phase within a wavelength
of 27uy/w, at injection. In this Lagrangian approach, then,
&, is used to specify and keep track of the individual elec-
trons. Beyond the point of injection the computed electron
phase is represented by the function ¢, ( y,d,). The scaled
velocity of the electron relative to the injected beam velocity
is given by q( y,4,), and 4, ( ¥) and 6, ( y) are the scaled
amplitude and phase of the nth wave.

In the weak cold beam formalism, Poisson’s equation,
Newton’s law, and the charge conservation equation are ma-
nipulated into a form suitable for calculation on a computer.
In terms of the above scaled variables, they are

dA, B o, (17” )3 27rld¢o sin(¢, —6,) (9)
dy o\ /) Jo 201 1+mq
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2"’% cos(d, —6,)

do, _ o, (11_) I

dy o, \n/ A, Jo 27l 1+74q
__wi Ui b,, (10)
@y M
3 i -0
ﬂ:z , 4, sin(g, ) , an
dy n=1 0 1+ 74
a
¢n — (wn/a)l)q . (12)
dy 1+ 7,4

The / in the limits of integration is an integer satisfying
27l = w,T, where T is the period of the total signal voltage,
33 _, V,(z,t) (Tis well defined only when the ®,,’s are com-
mensurate). From Egs. (9)~(12) we can derive conserva-
tion of momentum,

d[< T )3 2 il dé, ]
— 41 4 ~Zagl=0.
dy gﬁ(nn "t am?

We integrate Eqgs. (9)—(12) numerically. The step size
is Ay = 0.01 and we use 600 electrons in / main wave wave-
lengths. As a check on the accuracy of the calculation we
ensure that Eq. (13) is satisfied; 4, and q are of order unity,
and the discrepancy is always less than 2 X 1075,

The Kruer, Dawson, and Sudan approximation essen-
tially consists of replacing the beam with a single particle
placed in each well of the LAW. Actually, the replacement
we make in our simulation is more realistic than the original
KDS calculation since the amplitude and phase variation of
the LAW are included, the well is sinusoidal rather than
harmonic, the particles need not make small displacements
from the equilibrium point, and the sideband amplitudes
need not be small.

lil. RESULTS

In this section we present our basic findings. We first
give the results for the simple case of a single particle placed
in the bottom of each well at the beginning of the simulation.
Next we consider the case in which the particle is started
with a finite displacement away from the bottom of each
well. Finally, we consider the realistic case of sideband
growth caused by the trapping of a beam from the LAW,
that is, many particles in each well.

Before presenting these results, we first show that there
exists a well-defined phase relationship among three waves
with equally spaced frequencies. From Eqgs. (6) and (8), the
total electric field to lowest order in 7, is

(13)

E(z,)
= a2 2% 4, (pysin [wl (—1—— t) - 0.(y)]
o M@,
+ 47} @2V A,( y)sin [‘02 ( L _ t) — 6,( J’)]
o 7@,
+ 47} @3 A;( y)sin [‘03( r__ t) - 03(y)].
Uy 7@,
(14)
Aty =0, we can write this as
EO,t) = (i/2)E {expli), ()] + €, explih,(1)]
+ & expli;(8)] —c.c.}, (15)
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where
E, = 47i (0,Vo/uy)4,(0), (16)
€, = (0,/0,)[A4,(0)/4,(0)], (17)
€ = (w3/w,)[45(0)/4,(0)], (18)
and
(1) = w2 + 6,(0), (19)
(1) = (@, + Aw)t + 6,(0), (20)
(1) = (@, — Aw)t + 6,(0). (21)
We see that the quantity
Op = 9, (1) + ¢¥5(2) — 29, (1)
= 6,(0) + 65(0) —26,(0) (22)

is time independent but depends on the values of the initial

phases. It is a characteristic of the signal and cannot be re-

moved by a time translation. The quantity ®, defines a phase

relationship among the three waves that is invariant in time.
We can also write Eq. (15) as

E0,t) = (i/2){c()exp[i{wt + ®(1))] —c.c.}, (23)
and when ¢, = €, = 6; <1,
c(t) = E [1 + 2¢,cos Awt cos(©®y/2) ],
(24)

O (1) =y + 2¢€, cos Awt sin(By/2).

Thus, when ©,/2 = 0, we can consider the three waves as an

amplitude modulated wave
Exm = E, (1 + 2¢, cos Awt)cos(wot + 7), (25)

and when ®,/2 = 7/2, we can consider the three waves as a

frequency modulated wave
Egy = E, cos(wgt + 2€, cos Awt + ¥). (26)

We can generalize the invariant phase to y#0. Let us rewrite
Eq. (15) as

E = (i/2)E,(p){explit, (,1) ] + &,(»)

Xexpli,(3,1)] + &s(Mexpligs(n,1)] —cc},  (27)
where
b 0t) = — o, /10, ~ 1) +6,(y) (28)
and we form in analogy with Eq. (22),
OW) =1 + ¥s(1,1) — 24, (1,2)
=6,(») + 65(») —26,(»). (29)

This quantity may be interpreted as the spatial variation of
the sum of two phases: the upper sideband phase relative to
the main wave phase plus the lower sideband phase relative
to the main wave phase. For the situation depicted in Figs.
1(b) and 1(c) this quantity is zero.

A. Single particle case

We now present the results for the sideband behavior in
the simple case of a single particle placed in the bottom of
each well. The velocity of the particle relative to the well is
zero at the beginning. Figure 2(a) is a plot of the logarithm
of the electric field amplitude, 20 log[2(@,/®,)4, ], versus
axial distance y. The solid curve corresponds to the LAW;
the dashed and dotted curves correspond to the upper and
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FIG. 2. Simulation results for a particle placed at the bottom of each well.
(a) Wave electric field of the LAW (solid line), upper sideband (dashed
line), and lower sideband (dotted line) versus distance for ®, = 0. (b) In-
variant phase versus distance for ®, = 0. (c) Wave electric field versus dis-
tance for @, = 7. (d) Invariant phase versus distance for @y = 7.
M =17n,=1n,=00]; b= —0.33, b,=2.10, by = —2.94; 4,(0) =3.0,
A,(0) =4.286X 1075 4,(0) = 6.00xX 107 % 0, =% 0, =%

lower sidebands, respectively. At y = 0, the waves are start-
ed in the form of a pure amplitude modulation of the LAW
(®, = 0). The phase velocities of the sidebands have been
chosen to maximize the sideband growth rates. The side-
bands are seen to grow smoothly by approximately 9 dB. The
upper and lower sidebands behave quite differently in the
initial region, y < 12. Beyond y=12 they grow at the same
asymptotic growth rate until they reach approximately the
same amplitude as the LAW and detrap the particle. In Fig.
2(b) we plot the invariant phase, @ (y), vs y. It exhibits some
variation for y < 10 but beyond y= 10 it remains near zero.
Figure 2(c) shows a plot of 20 log[2(w,/®,)4,] vs y for
the case where the waves are started in the form of a pure
frequency modulation of the LAW (®, = 7). Again the up-
per and lower sidebands behave quite differently from one
another in the region y < 8. Beyond this point they grow at
the same asymptotic growth rate as in the case for @, =0
[Fig. 2(a)]. However, by y = 28 the upper and lower side-
band levels are 20 dB higher than the corresponding levels in
Fig. 2(a). We see that the value of ®, strongly affects the
sideband growth rates near the beginning of the instability,
and that although the asymptotic growth rate does not de-
pend on ®,, the amplitudes of the sidebands in the asympto-
tic growth region do depend on ®,. In Fig. 2(d) we show the
corresponding plot of ® (y) vs y. In this case ®(y) is seen to
evolve from @, = 7 to an asymptotic value, ©,,,,, =0. In
the initial region y < 10, the sidebands adjust their phases so
as to attain the asymptotic value ®,, ,, = 0. The ratio of the
sideband amplitudes in the asymptotic growth region is giv-
en by the KDS theory. Neglecting terms of order 7,,

B2/ Bs sy = |@,,/ (@, — 2)], (30)
where 0, = o,/0,, E, and o, are the electric field ampli-
tudes and angular frequency of the upper sideband, respec-

tively, and E, and w, are the corresponding quantities for the
lower sideband. For the parameters of Fig. 2, the asymptotic
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ratio of the sideband electric field amplitudes is 8.77 dB. The
simulation agrees well with this expression. In Figs. 2(a)
and 2(c) the asymptotic ratio is seen to be 9 dB. In the limit
w,—1, we would have |E)/E;|,m—1 and O, =0.
Therefore, in this limit the LAW and the sidebands are:
equivalent to an amplitude modulation of the LAW. In gen-
eral, for sufficiently small, equally spaced sidebands one can
represent a launched signal at y = 0 as a mixture of ampli-
tude and frequency modulation. The system evolves in such
away that in the asymptotic growth region the LAW is pure-
ly amplitude modulated. As seen in Fig. 2, even when
| E,/E;| # 1 and thus the modulation is not quite pure ampli-
tude modulation in the asymptotic growth region, we still
have @, = 0, corresponding to the value associated with
amplitude modulation. It is interesting to note that although
the sidebands adjust their wave phases so that ®,,,,, =0, at
y =28 the amplitudes of the sidebands launched with
©®, = 7 are much higher than the levels of those launched
with @, = 0.

We have checked that the growth rates and real wave-
number shifts in the asymptotic growth region agree with
those given by the KDS analytic theory. In Fig. 3 we show
the scaled growth rate, v, 6k;/n,@,, and the scaled real
wavenumber shift, v, 6k,/1,@,, as a function of the scaled
phase velocity (u,/v— 1)/n,. Here 8k, and 6k, are the
growth rate and real nonlinear wavenumber shift, respec-
tively, and v is the phase velocity. The dots represent the
result of the simulation and the line is the result of the KDS
analytic theory. The dashed lines indicate the scaled phase
velocities at which Eq. (1) is satisfied. The agreement is seen
to be good.

The equations we use to generate Fig. 2 are Eqgs. (9)-
(12) simplified by following only one particle in each well of
the LAW. A complication arises when Eq. (10) is simplified
to the single particle case. For the LAW at y = 0, we have

8r VL!Sk

Imaginary Part

(up/v - 1}/n
-2k
-4F
Real Part
-6}f /
18

- FIG. 3. Growth rate and real wavenumber shift versus scaled phase velocity

for simulation (dots) and for analytic theory (lines). A4,(0) = 1.0,
A,(0) =1.0Xx107% A4,(0) = 1.0Xx107° All other parameters are the
same as in Fig. 2.
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where b, is an input parameter that expresses the difference
between the particle velocity and the LAW phase velocity in
the absence of the particles. The most natural choice for b, is
b, = 0. However, this choice causes a large phase shift to be
initiated at y = 0. Since 4,(0) is of order unity, and since
¢, = 8, = 7 for a particle placed at the bottom of the well,
the right-hand side of Eq. (31) is of order unity. Physically,
this phase shift is a result of a change in the wave dispersion
caused by the presence of the particles. This large phase shift
of the LAW causes the particle to oscillate with a large am-
plitude and thereby causes large trapping oscillations. We
avoid this effect by choosing b, = — 1/4,(0). With this
choice no large phase shifts occur, no significant trapping
oscillations occur, and there is no essential deviation from
the KDS theory.

Perhaps a more natural way to deal with this problem of
large phase shifts is to choose 4, = 0 and place the particle at
¢, — 6, =m/2 or 3m/2. Again the right-hand side of Eq.
(31) is zero, but the problem is complicated by introducing a
large initial oscillation amplitude of the particle. However,
this is quite sensible physically, since in the many-particle
case the beam electrons are not trapped at the very bottom of
the well. Instead, they execute rather large phase displace-
ments away from the equilibrium point at the bottom of the
well.

In Fig. 4 we exhibit the same types of plots as in Fig. 2
but with the particle placed at ¢, — ®, = 37/2aty = 0. The
phase velocities of the sidebands have been chosen to maxi-
mize the sideband growth rates, and the particle velocity
relative to the LAW phase velocity is zero at y = 0. Figure
4(a) is a plot of 20 log (2w,A4,/w) vs y for @, =0. The
LAW is seen to execute large trapping oscillations as expect-
ed. In addition, both the upper and lower sidebands are seen

(31)
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FIG. 4. Simulation results for a particle placed at a finite amplitude in the
well. (a) Wave electric field of the LAW (solid line), upper sideband
(dashed line), and lower sideband (dotted line) versus distance for ® = 0.
(b) Invariant phase versus distance for ®, = 0. (c) Wave electric field ver-
sus distance for ®, = 7. (d) Invariant phase versus distance for ®, = .
b, =0, b,=170, by= —2.38; A4,(0) =30, A4,(0)=4.286X 1074,
A(0) = 6.00 10~*. All other parameters are the same as in Fig. 2.
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to execute oscillations at twice the bounce wavenumber. The
sideband growth rate is much lower than that shown in Fig.
2(a). In Fig. 4(b) we show the corresponding plot of @(y)
vs y. After undergoing a large oscillation in the region y < 10,
the invariant phase oscillates about the amplitude modula-
tion value, ®,,,, =0. Figure 4(c) shows a plot of 20
Xlog A(y) vs y for the case of ®, = 7. Again we see large
trapping oscillations of the main wave and oscillations in the
sideband. Just as in Figs. 2(a) and 2(c), we see that the level
of the upper sideband is on average higher than that of the
lower sideband. In addition, we see that at y = 32, the levels
of both upper and lower sidebands are 10 dB higher for
®, = 7 [Fig. 4(c)] than for ®, =0 [Fig. 4(a)]. In Fig.
4(d) we show the corresponding plot of ®(y) vs y. Here,
®(y) is seen to shift from @, = 7 toward @(y) = 27 and
then to oscillate about this value. Since the invariant phase is
only uniquely specified up to integer multiples of 27, again
we see that @ () oscillates about the value corresponding to
amplitude modulation. In summary, starting the particle out
at a finite oscillation amplitude at y = O decreases the side-
band growth rate and introduces an oscillatory behavior in
both the wave amplitude and the invariant phase.

B. Many-particle case

In Fig. 5 we show the evolution of the electric field and
the invariant phase for the many-particle case. The sideband
phase velocities have again been chosen to maximize the
growth rate. Aty = 0, the LAW is launched in the presence
of a uniform density beam. The beam is then immediately
trapped by the LAW. The LAW is launched at a level rough-
ly three times the saturation level and the beam is deeply
trapped. The beam particles oscillate riear the bottom of the
well and the LAW exhibits little amplitude variation. In
Figs. 5(a) and 5(c) we display the evolution of the electric
field for the cases where the waves are launched with ®, = 0
and ©, = 7. Although the LAW is of nearly constant ampli-
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FIG. 5. Simulation results for beam electrons trapped by the LAW. (a)
Wave electric field of the LAW (solid line), upper sideband (dashed line),
and lower sideband (dotted line) versus distance for ®, = 0. (b) Invariant
phase versus distance for @, = 0. (c) Wave electric field versus distance for
®, = . (d) Invariant phase versus distance for ®, = 7. b, =0, b, =22,
b, = — 3.080. All other parameters are the same as in Fig. 4.
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tude, similar to the bottom of the well case (Fig. 2), the
sidebands undergo large oscillations as they grow, similar to
the finite oscillation amplitude case (Fig. 4). The sideband
growth rate is larger than that for the finite oscillation ampli-
tude case but smaller than that for the bottom of the well
case. As in both cases, the level of the upper sideband is on
average higher than that of the lower sideband. Also, as in
both cases, Figs. 5(b) and 5(d) show the invariant phase for
®, = 0 and 7 evolving to the amplitude modulation value (0
and, equivalently, — 27) asymptotically. Again we see that
the value of @, affects the sideband behavior, especially near
the beginning of the instability.

IV. CONCLUSION

The essential features of the sideband instability that
occurs when a large amplitude wave traps an electron beam
are well described by a simple model in which a single parti-
cle oscillates in each well of the LAW. Both upper and lower
sidebands are unstable and their behavior is dependent on an
invariant phase relationship that exists between the two side-
bands and the LAW. For sufficiently small sidebands, an
upper and lower sideband launched at equal frequency sepa-
ration from a LAW are equivalent to a mixture of frequency
and amplitude modulation of the LAW. The value of the
invariant phase expresses this mixture. As the interaction
proceeds, the phases of the sidebands adjust so that in the
asymptotic growth region the value of the invariant phase
corresponds to that associated with amplitude modulation.
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