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The electrons of a pure electron plasma may be in thermal equilibrium with each other and still be
confined by static magnetic and electric fields. Since the electrons make a significant contribution to the
electric field, only certain density profiles are consistent with Poisson’s equation. The class of such
distributions for a finite length cylindrical column is investigated. In the limit where the Debye length is
small compared with the dimensions of the column, the density is essentially constant out to some surface
of revolution and then falls off abruptly. The falloff in density is a universal function when measured along
the local normal to the surface of revolution and scaled in terms of the Debye length. The solution for the
shape of the surface of revolution is simplified by passage to the limit of zero Debye length.

An interesting property of a pure electron plasma is
that the electrons may come to thermal equilibrium
with each other and still be confined by static electric
and magnetic fields. Moreover, the long confinement
times obtained in recent experiments® with pure elec-
tron plasmas suggest that the thermal equilibrium
states may be obtainable in practice. For the confine-
ment geometry of these experiments, we determine
the class of thermal equilibrium density distributions
which are consistent with Poisson’s equation. Our work
differs from previous work on this subject?™* in that we
treat a column of finite length and give special attention
to the limit of zero Debye length. Although this paper
is self-contained, the reader may wish to refer to the
preceding paper? for a detailed treatment of the infinitely
long column.

The confinement geometry is shown in Fig. 1. A
conducting cylinder is divided into three sections, with
the two end sections having negative bias relative to the
central section. A uniform magnetic field B is directed
along the axis of the cylinder. The plasma resides in
the central section, with axial confinement provided by
the negatively biased end sections and radial confine-
ment provided by the magnetic field. We denote the
radius of the cylinder by 7, and the length of the central
section by 2z,. The wall potential of the central sec-
tion is denoted by V and that of the end sections by V
~AV,

Since the system has cylindrical symmetry, the elec-
tron canonical angular momentum and the electron en-
ergy enter the thermal equilibrium electron distribu-
tion function on equal footing,*® as

F=ng(m/2nT)/? expl— (1/THH — wps)] - (1)

The electron energy is given by H=m?/2 ~ ep(r, z),
where ¢ is the electric potential and m, —e, and v are
the electron mass, charge, and velocity. The electron
canonical angular momentum is given by p, = mvgr —{e/
c)Ay(r)r, where A,(7) is the § component of the vector
potential and c is the speed of light. The parameters
nyg, T, and w are determined by the total number of
electrons, energy and canonical angular momentum in
the system. The distribution can be rewritten as
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f=no<2L:_f>3/2

X exp{——jl,[%(v - wrd)? - eqlr, Z)+%w(9 - w)r{\} )
(2)

where we have used A4(7) = Br/2 and have introduced the
cyclotron frequency Q = eB/mc. (We neglect the dia-
magnetic field since all velocities are small compared
with ¢ and since the density is below the Brillouin limit. )
The velocity dependence of f is a Maxwellian in a frame
rotating with frequency w. For sufficiently large mag-
netic field (i.e., large ), the last term in the expo-
nential forces the distribution to zero at large ». We
assume the conducting cylinder is outside the radius
where the distribution becomes exponentially small.
The electric potential makes the distribution exponen-
tially small near the negatively biased end sections.

The electric potential must be determined self-con-
sistently from Poisson’s equation,
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—— ¥y ——+—2
ror oar oz

= 4reng expl- T7Y = ew(r,2) +1m w(Q - w2},
(3)

where the density on the right-hand side has been deter-
mined by integrating Eq. (2) over velocity. This equa-
tion must be solved subject to the boundary conditions
on the cylinder. The solution depends on the param-
eters ng, T, w(Q - w), 7., 2z, and AV. We assume that
V is adjusted to make ¢(7, z) zero at the origin, in
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FIG. 1. The confinement geometry.
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which case ») represents the value of the density at the
origin. By scaling Eq. (3), the number of parameters
can be reduced. In terms of the variables

e mwl(— whrt 7 z

E——— = == 4
Zf’ T ZT 3 p XD’ \Z: xD, ( )
22 = T =2mw(ﬂ—w)_1

D~47m°ez ’ - 41"70@2 ’

Eq. (3) takes the form

la o 8%
-2 % (o= 1) = 5
2o P op o0 (e*=1)-v, (5)

and the density is given by #(p, &) =ng exp[¥(p, £)]. The
solutions to Eq. (5) depend on the parameters y, eAV/
T, p.=7,/Ap, and &, =2,/Ap.

For any choice of these four parameters, the solution
y is unique. To show this, let ¥; and ¥, be two solu-
tions of Eq. (5) such that ¢, =i, =0 at the origin. Since
we have not specified the value of V, it is possible that
P, differs from ¥, by a constant on the cylindrical
boundary. To be specific, we assume that ¥, =iy on the
boundary. Near the origin, Eq. (5) implies that V*(x,
- ,)~ 0. This implies that either ¢, =y, in a finite do-
main around the origin or there exists a neighboring
domain where ¢,> §; and another where ¥, <¥,. We will
assume the latter possibility and deduce a contradic-
tion. The domain where ¥, <, must have a boundary
where ¢, =3,, since ¥, =y, on the cylinder. From Eq.
(5) and the divergence theorem one finds that [dS- (e,
— i) = [d®r{e’2 — ¢*1), where the left-hand integral is
over the boundary surface of the domain and the right-
hand integral is over the volume of the domain. The
left-hand integral is greater than or equal to zero and
the right-hand integral is negative. Hence, there can
be no domain where ¢, <y¢;, and thus ¥, =i, over a finite
domain around the origin. By extension, one sees that
¥ = ¢, throughout the cylinder.

For the case of an infinitely long column, >~ § is in-
dependent of { and is determined by a single parameter
y. To obtain a qualitative picture of the solutions for
this case, we note that in the region where ¥(p) is small
one may replace [exp(y) —1] by ¢ in Eq. (5). The solu-
tion satisfying the boundary conditions ¥(0) =9’(0) =0 is
¥(p)=9[1 - I,(p)], where I,(p) is the Bessel function of
imaginary argument. [The boundary condition '(0) =0
follows from cylindrical symmetry.] If y is very small
and positive, ¥(p) remains small up to a large value of
p, after which it rapidly becomes negative due to the
exponential nature of I;(p). The rapid increase of —¥(p)
continues even after |#|>1, but in this region ¥(p) varies
as —p®. The density, n(p)=n,exp(y), remains constant
up to a large value of p and then falls rapidly to zero.
The width of the plasma column is given approximately
by the value of p for which ¥(p)~~1 (i.e., p~ —Iny).
For very small y, the falloff in density occurs at large
p, and Eq. (5) can be approximated as d%)/dp® = exp ()
-1 in this region. This equation is independent of y and
unchanged by a shift along the p axis, The boundary con-
ditions at the beginning of the falloff region are
$(p) = —yIy(p) and 9’(p)~ ~yI}(p). Taking into account
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the exponential nature of I)(p) for large p, the v depen-
dence in the boundary conditions can be accounted for by
a shift along the p axis. In other words, the curves

P(p, y) for different (but small) values of y are nearly
identical in the falloff region except for a slight shift
along the p axis. This can be seen in Fig. 1 of the pre-
ceding paper2 where numerical solutions for ¢(p, y) are
plotted versus p for values of ¥ ranging from 1 to 107°,
Figure 2 of this paper is a plot of the universal functions
$(p,v=0) and n(p) = nyexp().

A simple way to understand the density profile is to
interpret the last term in the bracket on the right-hand
side of Eq. (3) as the potential energy of an electron in
a hypothetical cylinder of uniform positive charge. The
electrons match their density to that of the hypothetical
positive charge,

2
dgn,e=-V? [—l—mw(ﬂ -w) r_] _2m w(Q -w), (8)
-e) 2 e
neutralizing it out to some radius where the supply of
electrons is exhausted, At that radius the electron den-
sity falls off on a scale set by the Debye length, Note

that #,=#, is just the condition y =0,

For the case of a finite length column, the numerical
solution of Eq. (5) is obtained by an iteration procedure.
We choose a ¥{p, £) such that $,(0, 0) =0 and calculate
exp($;) -1 —y. Using this for the right-hand side of
Eq. (5), we solve Poisson’'s equation numerically® for a
¥,(p, £) such that , =eV/T - (y + 1)p?/4 on the central
cylinder and $,=eV/T - eAV/T —(y +1)p%/4 on the end
cylinders, with V adjusted to make #,(0, 0)=0. To make
the domain of the numerical integration finite in length,
use is made of the fact that the potential is approxi-
mately uniform across the cylinder at an axial position
sufficiently far into either of the end sections [i.e.,
Y(p)=eV/T —eAV/T - (y+1)p%/4, for |l -£,>p,].
After P,{p, £) is obtained, the procedure is repeated
until it converges.

For the Debye length small compared with the dimen-
sions of the plasma, the picture that emerges from the
numerical calculations is that of a uniform density plas-
ma bounded by a surface of revolution where the density
falls off rather abruptly, that is, on the scale of a Debye
length, Such solutions occur in the limit of small y. If
we consider an arbitrary plane containing the ¢ axis
[i.e., a (p, ) plane], the curve defined by ¥(p, ¢)=~-1
lies in the region where the density falls off. At an ar-
bitrary point along this curve, we can introduce a local
orthogonal coordinate system (u, v), where u is tangent
to the curve and v is normal to the curve. For small
¥, the radius of curvature of the y= -1 curve should be
large compared with unity, that is, large compared
with the Debye length in unscaled variables. Conse-
quently, Eq. (5) takes the form 3%y/8%v = exp() -1 -7,
and the fall off in density {i. e., n(v)=nyexp[(v)]} is of
the same form as that shown in Fig. 2. As an illustra-
tion, we consider the case y=0.0003, eAV/T=100,
p.=16, and ¢ =64. Figure 3 shows the curve ¥(p, )=
—1, with local orthogonal coordinate systems attached
at the points a, b, and c¢c. Figure 4 shows a comparison
between ¢(v) in these local coordinate systems and
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FIG. 2. The universal functions §(p, Y= 0) and n{p) =ngexp(¥).
The scaled radius p,, where ¥{p,}=—1, is given by
(21rp‘,)‘/2 exp(—p,) =Y. The division marks show units of p.

from Fig. 2. The solid curve is from Fig. 2, and the
circles, triangles, and crosses are values of y{v) for
the local systems a, b, and c, respectively.

In general, there are two length scales in the prob-

lem: the Debye length and the geometrical length scale.

If we pass to the limit of zero Debye length'(i.e., zero
temperature), the plasma has a sharp boundary, and
only the geometrical scale remains. This boundary is
a surface of revolution inside of which n=», and 3¢/
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FIG. 3. The (p,£)=—1 curve for ¥=0.0003, eAV/T =100, p,

=16, and {,=64. a, b, and c are three points where the local
orthogonal coordinate systems (x,v) are introduced.
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FIG. 4. Comparison of the fall-off of ¥(v) at the points a (cir-

cles), b (triangles), and c (crosses) of Fig. 3. The solid curve
is ¥(p) from Fig. 2.

3z2=0. The statement 3¢/9z=0 follows from the result
that ¢ =0 inside the plasma and simply expresses the
fact that there can be no potential variation along a field
line within a zero temperature plasma. Outside the
surface, »=0. The determination of the boundary sur-
face reduces to a rather unusual problem in potential
theory. One searches for a surface of revolution such
that V¢ = 4nmye inside the surface, V2 =0 outside the
surface, and 8¢ /0z =0 on the surface. Of course, ¢
must also satisfy boundary conditions on the cylindrical
wall. Taking into account the fact that ¢ is arbitrary
up to an additive constant, we choose ¢ =0 on the cen-
tral cylinder and ¢ =~ AV on the end cylinders. Note
that the conditions V2¢ = 47nye inside the surface and

3¢ /92 =0 on the surface together imply that 8¢ /82 =0
inside the surface.

Passage to the limit of zero Debye length removes
one of the parameters on which the solution depends.
For the case of finite Debye length, the four parameters
specifying the solution may be taken to be eAV/T, (r./
Ap) (2./2pF and (r,/x,)?. Here, 7, is the radius of the
plasma at z=0; it is defined as ¥(»,/\p,£=0)=~1 and
must be given by a function of the form »,/x, =fy, eaV/
T,7./2p,2,/Ap). The four parameters all become in-
finite as X% and T go to zero. Multiplying by (33 /+2)
yvields the three well behaved parameters (eAV/ne?72),
(z./7. ), (r,/r.F and the constant, 1.

To construct a solution dependent on these three pa-
rameters we introduce the scaled lengths Rzr/rc and
Z=z/r, and the scaled potential & = eg /nge®r%. The
edge of the plasma is a surface of revolution such that:
(i) v?® is equal to 47 inside the surface and is equal to
0 outside the surface, and (ii) 8%/5Z =0 on the surface.
The boundary conditions at the wall are: (iii) #(1, 2)
=0 for | Z1 < Z,=2,/7, and &(1, Z) = - eAV/nye*r? for
1Z1>Z,.

We search for the boundary surface iteratively.
Consider first an arbitrary surface of revolution Z =
+Z {R). We solve for a potential ¢ satisfying condi-
tions (i) and (iii). [In general, this & will not satisfy
condition (ii). ] Such a ® can be written as
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FIG. 5. The end shapes of the plasma column for different
values of r,/rc. The zero of the abscissa has no physical sig-
nificance.

®(R, Z) = o(R, Z)

1 Z(R"

- | araar [ 7 az'G(R,Z;R, 2").
0 -Z (R

where V:®,=0 everywhere inside the cylinder and &,

satisfies the boundary conditions (iii). The Green’s

function, G(R,Z;R’,Z’), is zero on the cylindrical wall.

One can easily show that

2AV
®y(R, 2) = “ger?

y E Jplu,R) coshy, Z o

2J1{1,) (coshy, Z +sinhy, Z,)’
for 1Z| <Z, and

c(R,z;R',z')=zz%ﬂexp<-un|2-z'l>,

where p, is defined by Jy(u,)=0.

Let the surface be slightly deformed to Z=+[Z (R)
+8Z(R)). This changes 2%/8Z evaluated at the edge of
the plasma by an amount

G[BQ/SZ'ZS(R,] =8°®/82°%| 5 ()6 Z(R)
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- fo ldR' 27R'62(R")8/82{G[R, Z; R’, Z (R’)]

+G[R1 Z;R,!—Zs(R’)]}lzs(R)- (8)

This equation can be inverted numerically to yield
8Z(R) as a function of 6(8%/92| zs(R))' One chooses
6(3<I>/BZ|ZS(R,) to be - a(aq:/alesm,), where o is some
small constant. By iterating, the surface deforms un-
til 88/8Z =0 for all points on the surface. For this sur-
face, ® meets all of the conditions {(i)—(iii). In other
words, it is the boundary surface of the cold plasma.

In the limit of large Z, and large eAV/nyé®r%, the po-
tential &, is proportional to AV exp{- 14(Z, ~ 2)]Jy(1,R)
for Z,~Z>1. This means that changing AV does not
change the shape of the surfaces of constant &;, but
merely causes a parallel displacement of them. As a
consequence, the length of the plasma column is changed

‘but not its end shape. The end shape is uniquely deter-

mined by the parameter ‘r,/r,,; Fig. 5 displays the end
shapes for different values of »,/7,. It should be noted
that the origin of the abscissa is arbitrary; the num-
bers on the abscissa are included only to indicate the
scale length.
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