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Measurements of a Nonlinear Diocotron Mode in Pure Electron Plasmas
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Measurements of frequencies and density perturbations of the large amplitude / =1, k, =0 diocotron
mode on pure electron plasma columns are presented. This mode is a nonlinear dynamical state of an
off-axis electron column which is ExB drifting around the containment axis. At large amplitudes, the
plasma column distorts into an oval cross section and the mode frequency shifts by an amount propor-
tional to mode amplitude squared. The frequency shift arises because (1) the plasma is closer to its im-
age than a linear model assumes, and (2) the shape distortion modifies the image charge distribution.

PACS numbers: 52.35.Mw, 52.25.Wz

A magnetized pure electron plasma column contained
inside conducting cylinders supports electrostatic models
that vary as exp(il0+ik,z —iwt). Here we consider the
fundamental “diocotron” mode with /=1 and k, =0. At
large amplitudes, this mode is best described as a stable,
nonlinear dynamical state rather than as a perturbation
of the type treated by linear theory. The dynamical state
is a displaced and distorted electron column which is
ExB drifting around the axis of the containment
cylinders. Nonlinear effects cause the distortion of the
displaced plasma column and a shift in the mode fre-
quency. In this Letter, we present measurements of the
density and frequency of this nonlinear state, and find
that much of the behavior can be explained with remark-
ably simple models.

Diocotron modes are found in many magnetized
charge-particle systems, such as electron beams,! magne-
trons,? and Penning traps.> In many systems, the parti-
cle motion along the magnetic field is largely decoupled
from these modes: For our system the axial bounce time
(t, ~1 us) is small compared to the wave period (1/
f~20 us), so only the r-0 drift dynamics need to be con-
sidered.

The /=1, k, =0 mode is unique in that it is an essen-
tially undamped center-of-mass motion in the -6 plane.
Experimentally, we observe no damping in 10° cycles, in
contradiction to current theory,* which generally pre-
dicts damping in 103 cycles or less. Previous experi-
ments did measure damping of the mode, but this was
apparently due to plasma confinement limitations.’
However, even in perfectly confined plasmas, shear is
necessarily present in the drift velocity field at large am-
plitudes, so the mode may damp on the viscosity time
scale of about 10° cycles;® this has not been treated ex-
perimentally or theoretically.

The pure electron plasmas are contained in cylindrical
geometry, as shown schematically in Fig. 1. A uniform
axial magnetic field B, provides radial confinement, and
negative voltages applied to end cylinders 4 and C
confine the electrons inside the grounded cylinder B.
The apparatus is operated in an inject-manipulate-dump
cycle. For injection, cylinder A is briefly grounded, al-

lowing electrons to enter from the negatively biased ther-
mionic source. The trapped electrons can then be mani-
pulated, and waves can be transmitted and received us-
ing isolated sections of the cylindrical wall. Finally, the
plasma is dumped by grounding cylinder C: The elec-
trons stream out along the magnetic field lines, and mea-
surement of the charge Q which passes through the colli-
mator hole of area A, ==(1.6 mm)? gives the z-averaged
electron density
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We neglect the 5% variation in plasma length L, by
presuming L, is constant with radius. The plasmas stud-
ied here have density n~5x10® cm ™3, thermal energy
kT~1 eV, radii 1.3 <R, <2.9 cm, and length L, = 36
cm. The cylindrical wall has radius R,, =3.81 cm and B,
is 375 G.

Linear theory’™® describes the /=1, k, =0 diocotron
mode as perturbation charges varying as
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FIG. 1. Schematic diagram of the cylindrical containment
system.
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FIG. 2. Equally spaced contours of z-averaged density
n(r,0) measured phase coherent with a large-amplitude /=1
diocotron wave. The outer circle represents the cylindrical
wall, the cross the location of the wall center, and the asterisk
the center of mass of the plasma. Tick marks are at 1-cm in-
tervals.

the mode amplitude. The charges revolve due to EXB
drifts at a frequency fo=cNe/nB,R2 which depends on
the line density Ny = [ no(r)2zrdr and on B,. Addition-
ally, linear theory predicts small increases in fo due to
finite length effects.* For comparison, the cylindrical
plasma rotates about its own center at a frequency fr
=~ foR2/R?. The linear theory requires 6n(r) Kno(r).

We believe that this diocotron mode is more accurate-
ly described as the entire plasma column displaced off
the cylindrical axis by a distance D, and revolving
around this axis due to ExB drift. Of course, for small
displacements this can be modeled by the perturbation
charges of Eq. (1). However, we find that nonlinear
effects appear not when 8n~ng at some radius, but rath-
er when D becomes comparable to R,. Two simple
effects then give nonlinear frequency shifts: The fre-
quency tends to increase because the plasma column is
closer to the image charges in the wall; and the frequen-
cy tends to decrease because the plasma column distorts
so as to be elongated in the 6 direction.

Figure 2 shows contours of the z-integrated plasma
density n(r,0) measured phase coherent with a large-
amplitude diocotron mode at a frequency f=78.6 kHz.
The mode has been driven to a selected amplitude by
positive feedback over a period of a few hundred cycles:
The wave signal is received on one wall sector, amplified,
phase shifted, and then applied to an opposing wall sec-
tor, as shown in Fig. 1. The plasma column is both dis-
placed from the cylindrical axis (D/R, =0.23), and
elongated in the 0 direction. This plot was constructed
from about 103 separate inject-manipulate-dump cycles,
with a single n(r,0) measurement on each cycle. We
vary 6 by varying the dump time by At relative to a zero
crossing of the received wave, giving 6 =2xfAt; and the
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FIG. 3. Measured plasma distortion vs amplitude for plas-
mas of three different radii. Dashed lines graph Eq. (2).

collimator hole is moved radially to obtain the radial
dependence. The density is interpolated between data
points, and linearly spaced contours are shown in Fig. 2.
The regularity of the density contours reflects the fact
that shot-to-shot variations in the measured plasma den-
sity at any point are small (~1%).

The plasma elongation can be characterized by the
quadrupole moment g,, which can be calculated from
n(r,0). We define q,=(pxx —pyy)/(pxx+p,y), where
Pxx=Jx?n(x,y)dx dy, with a similar definition for p,,.
Here the (x,y) coordinate system is defined to have its
origin at the plasma center of mass and x lies along the
long axis of the plasma. If an initially circular plasma of
radius R, (defined to be the distance from the plasma
center to a point at which the density falls by a factor of
) is elongated by a small amount A in the x direction
and shortened by A in the y direction, then g, = A/R,.
When the plasma is not circular we use the displacement
of the center of mass as a measurement of D.

Figure 3 shows the measured quadrupole distortion g,
vs D for three plasmas of different radii R,. For each
plasma, the distortion scales as D2, but the amount of
distortion also depends upon R,. We find that our data
for eight different radius plasmas (a total of 79 points) is
well fitted with

g2=16.2(R,/R,)*(D/R,)?, ¢))

shown as dashed lines in Fig. 3.

This plasma distortion is accompanied by a shift in the
mode frequency which also scales as D2. Figure 4 shows
the measured variations in mode frequency for the three
plasmas of Fig. 3. The measured small-amplitude fre-
quencies, fo, are 23.4, 71.9, and 77.9 kHz, in order of in-
creasing plasma radius. The measured frequencies at
large amplitude differ from the small-amplitude frequen-
cies as

(f—fo)/fo=a(D/Rw)2 (3)
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FIG. 4. Measured frequency shift vs amplitude for three
different radius plasmas. The dashed lines are fits of the form
a(D/R.,)?, giving a =0.92, 0.59, and 0.18.

up to very large displacements. As can be seen in Fig. 4,
the coefficient a depends on R,.

We have measured this large-amplitude frequency
shift for a total of eight different size plasmas. The re-
sulting coefficient a defined by Eq. (3) is plotted in Fig.
5. The data are well described by

a=1-7.3(R,/R,)®, 4)

as shown by the curve.

This nonlinear frequency shift can be understood as
being due to two effects: A rigid displacement of the
plasma column brings it closer to its image charges in
the wall, thereby tending to raise the frequency, and the
elongation of the plasma column spreads the image
charges in the 6 direction, thereby reducing the image
electric field and tending to decrease the frequency.

The frequency shift due to a rigid displacement can be
found from an elementary calculation. We model the
plasma as a charge distribution that is cylindrically sym-
metric around an axis displaced from the wall axis by D,
and with charge per unit length of —Nye. It follows
from Gauss’s law that the electric field outside the plas-
ma is the same as that of a line charge with the same
charge per length located at the plasma center. Using
the method of images the wall can be replaced by an im-
age with line charge +/N_ e located at a radius of
r=r2/D. The image field at the wall axis gives the
linear ExB frequency fo, whereas the image field at the
center of the displaced plasma gives a frequency f shift-
ed from f by

_ 2
f=fo 1 _z[D]. )

f() displ 1— (D/Rw ) 2 R,

This explains the a =1 term of Eq. (4).
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FIG. 5. Measured coefficient of frequency shift [defined by
Eq. (3)] vs plasma radius. The solid line graphs Eq. (4). Also
shown are the results of a computer calculation by Prasad and
Malmberg based upon their theory.

The frequency shift due to the plasma distortion can
be estimated for a constant-density plasma of radius R,
by considering a quadrupole charge perturbation on the
surface of the displaced column. A straightforward cal-
culation shows that to lowest order the image charges
create an electric field that lowers the diocotron frequen-

cy by an amount
2 6
S=fo| 1R e [R] [
q2 R, R, s
)

fO 2 | Rw
where we have used Eq. (2) for g,. These two effects
[Egs. (5) and (6)] give a theoretical a=1—8.1(R,/
R,))®, in good agreement with the measured « in Eq. (4).
As mentioned earlier, finite length effects cause shifts in
the linear frequency fo, but we have no theory for how
they should affect the nonlinear shifts that we measure.

Alternately, the distortion of the plasma column and
the mode frequency can be calculated from the assump-
tion that potential and density are stationary in the
frame rotating at the mode frequency. This implies that
density and potential contours are coincident in that
frame.'® We have incorporated this assumption into a
computer code that models the plasma as a constant-
density “waterbag.” The boundary shape and the mode
frequency are iterated until the boundary matches a po-
tential contour. We find that this code gives close agree-
ment with the experimental results: The best-fit coef-
ficient for g, vs D is 16.7 as compared to 16.2 from ex-
periment [Eq. (2)], and the best-fit coefficient for a vs
R, is 7.6 as compared to 7.3 from experiment [Eq. (4)].

Prasad and Malmberg'® have developed a perturba-
tion theory based upon the same assumption. Their cal-
culations are in good agreement with experiment at low
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amplitudes only, i.e., D/R, <0.1. Their perturbation
theory suffers from the choice of the cylindrical axis as
the coordinate center: Large perturbations of high order
are needed just to model a displacement of the plasma
without distortion. Essentially, their perturbation terms
are expansions in D/R,, whereas we find nonlinear
effects entering as (D/R,,)>.

In summary, the /=1, k, =0 diocotron mode can be
understood as a drift of an off-axis plasma column. At
large mode amplitudes the plasma column distorts into
an oval shape and the mode frequency shifts. The distor-
tion is determined by the requirement that potential and
density contours are coincident in the rotating frame.
We have explained the observed variation of mode fre-
quency in terms of a simple model with two effects: (1)
The frequency tends to increase when a line charge is
closer to its image charge, and (2) the frequency tends to
decrease due to the distortion of the column.
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