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Asymmetries in applied electromagnetic fields cause plasma loss �or compression� in stellarators,
tokamaks, and non-neutral plasmas. Here, this transport is studied using idealized simulations that
follow guiding centers in given fields, neglecting collective effects on the plasma evolution, but
including collisions at rate �. For simplicity the magnetic field is assumed to be uniform; transport
is due to asymmetries in applied electrostatic fields. Also, the Fokker–Planck equation describing
the particle distribution is solved, and the predicted transport is found to agree with the simulations.
Banana, plateau, and fluid regimes are identified and observed in the simulations. When separate
trapped particle populations are created by application of an axisymmetric squeeze potential,
enhanced transport regimes are observed, scaling as �� when ���0��B and as 1 /� when �0

����B �where �0 and �B are the rotation and axial bounce frequencies, respectively�. These
regimes are similar to those predicted for neoclassical transport in stellarators. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2936874�

I. INTRODUCTION

Irreversible processes driven by the interaction of a
plasma with static electric and/or magnetic fields are of cen-
tral importance in plasma theory and experiment. For ex-
ample, in the theory of neoclassical transport, a magnetically
confined plasma interacts with static electric and/or magnetic
field asymmetries, causing irreversible flows of particles,
momentum, and energy across the magnetic field.1–4 In stor-
age rings and accelerators, charged particle beams interact
with static electric and magnetic field asymmetries in the
accelerator or ring structure, resulting in beam
degradation.5–7 In rf heating and current drive, an applied
wave heats and accelerates the plasma particles.8–11 When
viewed in the wave frame, the induced current and heating
can also be thought of as irreversible processes driven by
interaction between a moving plasma and a static field asym-
metry.

Even linear and nonlinear Landau damping can be
thought of as an interaction between a moving plasma and a
static field asymmetry when viewed in the wave frame.
While these two processes are not necessarily irreversible,
damping rates can still be determined using transport theory
by equating the Joule heating power to the wave energy loss
rate,12,13 with the regime of linear Landau damping equiva-
lent to the plateau regime in neoclassical transport, and the
regime of nonlinear Landau damping equivalent to the ba-
nana regime.

Over the decades, each of these subjects has spawned
innumerable papers. Theory in each area is well developed,
and simulations have tested almost every aspect of the
theory. There have also been detailed experimental studies in
many cases �Landau damping,14,15 rf heating, and current
drive,6,7 for example�. But in other cases �in particular, neo-
classical transport�, experiments have never adequately
tested the theory. In neutral plasma experiments, early work
on quiescent discharges was broadly consistent with
theory;16 but in many experiments neoclassical transport is

masked by anomalous transport caused by nonlinear satura-
tion of collective plasma instabilities. In non-neutral plasma
experiments, where such instabilities are absent, detailed
measurements of transport over the course of several decades
have still failed to make close contact with neoclassical
theory.17–20 Interpretation of experimental results is often
complicated by the interplay of multiple effects, even in the
simplest experimental design.

In order to make progress, it is this author’s view that
further simplification is necessary. This paper describes nu-
merical simulation and accompanying theory of neoclassical
transport in a set of three different experimental geometries,
of increasing complexity. In each case, particle mobility
and/or diffusion across the magnetic field is measured and
compared to theoretical predictions. Energy and momentum
transport caused by field errors is also analyzed. In order to
simplify the theory, we consider only transport driven by
electrostatic asymmetries, taking the magnetic field to be
uniform. Also, the potentials acting on the plasma are as-
sumed to be time-independent; self-consistent potentials aris-
ing from the plasma evolution are simply ignored. Use of
prescribed potentials has the advantage of considerably sim-
plifying the simulations, and removing certain difficult to
analyze nonlinear effects from the theory.

Even with these simplifications, the simulations and
theory uncover a wealth of physics, much of which can be
connected to the “classic” neoclassical results obtained de-
cades ago for plasmas trapped in toroidal magnetic fields.
One minor complication is that here equilibrium plasma ro-
tation due to E�B drifts is included in the analysis, and
transport coefficients that depend on E�B rotation fre-
quency �0 are derived. �This dependence was also consid-
ered in earlier work on transport in tokamaks21 and magnetic
mirrors.22�

When the plasma equilibrium is assumed to be a long
uniform column oriented along the direction of the magnetic
field B=B0ẑ, and an electrostatic asymmetry of the form
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���r ,� ,z�=��r�cos���+kz� is applied �where � /T	1 is as-
sumed�, the resulting radial transport displays the expected
neoclassical behavior, breaking into banana, plateau, and
fluid regimes depending on the collision frequency �1.

For large collision frequencies, �
kv̄, where v̄ is the
thermal speed, an analysis based on fluid equations provides
the transport coefficients. In this fluid regime, radial particle
transport is primarily caused by dissipation associated with
compression and expansion of the plasma as it rotates
through the field error. Temperature and velocity gradients
can also lead to irreversible fluxes of particles, energy and
momentum as the field error transports particles across the
magnetic field.

For small collision frequencies, �� �� /T�3/2kv̄, transport
coefficients are linear functions of �.23,24 The scaling of the
radial diffusion coefficient Dr in this “banana regime” may
be understood from the following argument. Particles be-
come trapped in the field asymmetry when they have an axial
velocity vz that satisfies

m

2
�vz − ��0/k�2 � � . �1�

Such trapped particles execute axial oscillations in the field
error at roughly the trapping frequency �T=�k2� /m. In these
oscillations, the particles also drift radially, with a radial “ba-

nana orbit” width �r of order ��2� /m /kr�c, where �c

=eB /mc is the cyclotron frequency. This estimate follows
from the product of the radial drift velocity �c� /eBr and the
period �T

−1 of the oscillation. Transport occurs as particles
become collisionally detrapped and then retrapped.

The size of the step in this process is �r. The time be-
tween steps is the time �t required to be detrapped from the
banana orbit, of order � / ��T� �the time needed to diffuse in
energy by order ��. The radial particle diffusion coefficient
Dr is therefore roughly

Dr � f
�r2

�t
, �2�

where f is the fraction of particles that take part in the ba-

nana orbits, of order f �e−�2�0
2/2k2v̄2�� /T for a Maxwellian

distribution. Putting these estimates together yields

Dr � ���

T

�2v̄2

k2r2�c
2e−�2�0

2/2k2v̄2
�3�

in the banana regime. This banana regime estimate is sen-
sible only when the particles are able to execute a full trap-
ping oscillation before they are collisionally detrapped. This
requires �T�t
1, which implies

��/T�3/2kv̄ 
 � �4�

for the banana regime.
For kv̄�� /T�3/2���kv̄, the transport is in the plateau

regime. Trapped particles no longer complete an entire ba-
nana orbit, so the size of the radial step is reduced to
�r�T�t. The diffusion coefficient is now given by

Dr � f�

��r�T�t�2

�t
, �5�

where f� is the fraction of particles in resonance with the
error,

f� � e−�2�0
2/2k2v̄2

/�kv̄�t� . �6�

This estimate yields the plateau regime diffusion coefficient

Dr � � �

T
�2 �2v̄3

kr2�c
2e−�2�0

2/2k2v̄2
. �7�

The previous descriptions of banana, plateau and fluid re-
gime transport were based on an equilibrium plasma with
periodic boundary conditions along B. For a plasma of finite
length, we find that the same three regimes can occur.

However, if the plasma equilibrium has even small frac-
tions of particles that are trapped in localized potential wells
within the plasma column, these equilibrium trapped par-
ticles can have a large effect on the transport. The field
asymmetry affects these particles differently than untrapped
particles, leading to strong gradients in the velocity distribu-
tion near the separatrix between trapped and untrapped par-
ticles, which produce enhanced transport. Two regimes are
identified, a �� and a 1 /� regime, depending on the ratios of
the rotation, collision, and axial bounce frequencies. Both
regimes have also been discussed in work on neoclassical
transport in stellarators,2 and �� transport has been related to
the damping of trapped particle modes in tokamaks25 and
non-neutral plasmas.26 Scaling of the transport in these re-
gimes is discussed in Sec. IV C.

In Sec. II, the general theory of transport due to electro-
static asymmetries imposed on a cylindrical magnetically
confined plasma equilibrium is developed from first prin-
ciples. This theory recapitulates much of the earlier work on
transport in more complicated toroidal geometries. In Sec.
III, the particle simulation methods employed here are de-
scribed. In Sec. IV, three examples of transport are analyzed
and compared to the simulations.

II. TRANSPORT THEORY

In this section the general theory of transport due to an
electrostatic field error is developed. The magnetic field is
assumed to be uniform, B=Bẑ, and sufficiently large so that
the guiding-center approximation is valid. In this approxima-
tion, cyclotron motion is neglected and particle dynamics are
described by the guiding-center equations,

d�

dt
=

��

�p�

,
dp�

dt
= −

��

��
,

�8�
dz

dt
= vz,

dpz

dt
= −

��

�z
,

where �r ,� ,z� are cylindrical coordinates, p� is the canoni-
cally conjugate momentum to � given by
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p� =
eB

2c
r2, �9�

pz=mvz is the linear momentum conjugate to z, and
��p� ,� ,z� is the electrostatic potential energy of a plasma
charge e, written for convenience in terms of p� rather than r
via Eq. �9�. �Note that � is the true energy measured in ergs,
not statvolts.� Equations �8� are of Hamiltonian form with
energy

H =
pz

2

2m
+ ��p�,�,z� �10�

a constant of the motion �in the absence of collisions and
time dependence in ��.

When collisions are included, a collection of particles
described by the distribution function f�� , p� ,z , pz , t� will
evolve according to

�f

�t
+ �f ,H� = Ĉf , �11�

where � � is a Poisson bracket defined by

�f ,g� =
�f

��

�g

�p�

−
�f

�p�

�g

��
+

�f

�z

�g

�pz
−

�f

�pz

�g

�z
, �12�

and Ĉ is the collision operator.
Various forms of the collision operator have been used in

solving Eq. �11�. In much of what follows, we assume that
the operator has the following properties:

	 dpzĈf =	 dpzpzĈf =	 dpzHĈf = 0. �13�

That is, the operator conserves particle number, momentum,
and energy. �Later, in Sec. II H we will modify the theory to
allow for operators that do not satisfy the latter two require-

ments.� Also, we require that Ĉ is invariant under time rever-
sal, i.e., �pz→−pz ,B→−B�.

A. Fluid equations

By taking velocity moments of Eq. �11�, fluid equations
for density, axial velocity, and energy can be obtained. We
will integrate these fluid variables over � and z since the
integrated functions enter the transport theory and simula-
tions. The �- and z-integrated density is defined as

n̄�p�,t� 
 	 d�dzdpzf , �14�

the mean axial velocity is

V̄�p�,t� 
 �mn̄�−1	 d�dzdpzpzf , �15�

and the mean energy per particle,

Ē�p�,t� 
 n̄−1	 d�dzdpzHf . �16�

The mean energy Ē can also be written as Ē= Ē�+mV̄2 /2,
where

Ē� = T̄/2 + �̄ �17�

is the mean energy as seen in a frame moving with velocity

V̄, T̄ is the plasma temperature given by

T̄�p�,t� = �mn̄�−1	 d�dzdpz�pz − mV̄�2f , �18�

and �̄ is the � and z-averaged potential,

�̄�p�,t� = n̄−1	 d�dzdpz�f . �19�

The fluid equations for these variables are

�n̄

�t
+

�

�p�

�n̄ = 0, �20�

mn̄
�V̄

�t
+

��v�

�p�

+ m�n̄
�V̄

�p�

− Fz = 0, �21�

n̄
�

�t
Ē� +

��
Ē
�

�p�

+ �
V̄
�

�V̄

�p�

+ �n̄
�Ē�

�p�

+ V̄Fz = 0. �22�

Here, �n̄, �
V̄
� , and �

Ē
� are the �scaled� fluxes of particles, axial

momentum, and energy, respectively �the latter two being
defined in a frame moving axially with mean fluid velocity

V̄�,

�n̄�p�,t� = −	 d�dzdpzf
��

��
, �23�

�
V̄
��p�,t� = −	 d�dzdpzpz�f

��

��
, �24�

�
Ē
��p�,t� = −	 d�dzdpz�H� − Ē��f

��

��
, �25�

where pz�= pz−mV̄ and H�= pz�
2 /2m+� are the momentum

and energy seen in the moving frame. Also, Fz is the axial
force per unit volume �integrated over � and z�,

Fz�p�,t� = −	 d�dzdpzf
��

�z
. �26�

The scaled particle flux, �n̄, is related to the unscaled
radial particle flux �r via Eq. �9�,

�r = � c

eBr
��n̄. �27�

This equation together with Eq. �20� implies that the density
evolves according to the continuity equation

�n̄

�t
+

1

r

�

�r
�r�r� = 0. �28�

Equations �21� and �22� have similar interpretations in terms
of conservation of momentum and energy.
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B. Fluxes in the transport limit

The main object of this section is to derive expressions
for the fluxes under various conditions. To obtain such ex-
pressions, we must solve the kinetic equation for the distri-
bution function. The solution is found in the following
“transport limit.” In this limit, the potential � is assumed to
have the form,

���,p�,z� = �0�p�,z� + ����,p�,z� , �29�

where �0 is the azimuthally symmetric “equilibrium” poten-
tial energy, and �� is the field error, and it is assumed that

���� 	 T̄ . �30�

Also, if V̄ is nonzero the transport limit also requires no
z-dependence in �0,

��0

�z
= 0 if V̄ � 0. �31�

These conditions allow a separation of time scales in the
solution for f . On a relatively fast time scale of order �−1

�where � is the collision frequency�, f approaches a quasi-
equilibrium form that depends on time only parametrically

through its dependence on n̄, V̄, and Ē. These three variables
slowly evolve via the fluid equations �20�–�22�, on a trans-

port time scale that becomes arbitrarily long as ��� / T̄�→0.
In the transport limit the distribution function is best

represented as a product of two parts:

f = f0�1 + g� , �32�

where g represents the nonadiabatic response to the field
error, with g	1, and

f0 

N�p�,t�e−�H−V̄pz�/T0

�2�mT0

�33�

is the adiabatic response, a Maxwellian with temperature T0

and arbitrary radial density profile. �Note that f0 depends on
�� through H as e−��/T0.�

Furthermore, we require that fluid quantities that are
conserved in collisions are determined entirely by f0; that is,

�n̄,mV̄,Ē�
 =	 d�dzdpzf0�1,pz,H�
 . �34�

This requirement together with Eqs. �14�–�16� and �32� then
implies that the perturbed distribution g is “orthogonal” to
these conserved quantities,

	 d�dzdpzf0g�1,pz,H�
 = O . �35�

The function N�p� , t� appearing in f0 can be related to
the �- and z-integrated density profile n̄�p� , t� by substituting
Eq. �32� into Eq. �14� and applying Eq. �35�,

n̄�p�,t� = N�p�,t�emV̄2/2T0	 d�dze−�/T0. �36�

Also, Eqs. �34� and �33� imply that T0 is related to Ē� by

Ē��T0,p�� =
T0

2
+ ����T0,p�� , �37�

where

����T0,p�� =
�d�dze−�/T0�

�d�dze−�/T0
�38�

is the average of � over f0. In other words, T0 is the tem-

perature of an equilibrium system that has energy Ē� per
particle �as seen in the moving frame�. This differs slightly

from the temperature T̄ defined via the kinetic energy
through Eq. �18�. Comparing Eqs. �37� and �17� implies that

T0 = T̄ + 2��̄ − ���� = T̄ +
2

n̄
	 d�dzdpzf0g� . �39�

Note that f0 does not itself drive fluxes, since f0�� /��
=−T0

−1�f0 /��, and f0�� /�z=−T0
−1�f0 /�z. Thus, Eqs.

�23�–�26� can be written as

��n̄,�
V̄
� ,�

Ē
�
 = −	 d�dzdpzf0g

��

��
�1,pz�,H� − Ē�
 �40�

and

Fz = −	 d�dzdpzf0g
��

�z
. �41�

�In deriving the third component of Eq. �40� we have used
the identity �0

2�d��e−�/T0�� /��=0.�
An equation for g is obtained by substitution of Eq. �32�

into Eq. �11�, using Ĉf0=0,

�gf0

�t
+

�f0

�t
+ �gf0,H� − ĈL�f0,g� = − �f0,H� , �42�

where ĈL is the collision operator found by linearizing Ĉf
about f0, assuming g	1. In the transport limit, the first term
on the left-hand side of Eq. �42� is negligible compared to
the second term once g has rapidly evolved to its quasiequi-
librium form with g	1. We therefore neglect this term in
what follows. The second term on the left-hand side can be
evaluated directly using Eq. �33�,

�f0

�t
= f0� Ṅ

N
+

pzV̇̄

T0
+ �H − pzV̄

T0
−

1

2
� Ṫ0

T0

� . �43�

But Eq. �36� implies that

Ṅ

N
=

ṅ̄

n̄
−

mV̄V̇̄

T0
+

Ṫ0

T0
2�mV̄2

2
− ���� , �44�

so that

�f0

�t
= f0� ṅ̄

n̄
+

pz�V̇̄

T0
+ �H� − Ē��

Ṫ0

T0
2
� . �45�

The time derivatives appearing in Eq. �45� can be evalu-
ated using the fluid equations �20�–�22�, along with Eq. �37�.
For example, ṅ̄=−��n̄ /�p�. If one then writes the fluxes in
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terms of g using Eqs. �40� and �41�, it is apparent that �f0 /�t
can be written as a linear functional of g. In other words, Eq.
�42� can be written as

L̂g = s , �46�

where the linear operator L̂ is defined as

L̂g 

1

f0

�f0

�t
+ �g,H� − gs − Ĉ̄g , �47�

Ĉ̄g 

ĈL�f0,g�

f0
, �48�

and the source function s is

s 
 − �f0,H�/f0. �49�

This function is the source of the perturbed distribution g
through Eq. �46�, which in turn is the source of the transport
fluxes through Eqs. �40� and �41�.

The functional form of s follows by substitution of Eq.
�33� into Eq. �49�, using Eq. �36� to write N in terms of n̄.
The result is

s =
V̄

T0

��

�z
+

1

T0

���

��
�− �r + pz�

�V̄

�p�

+ �H� − Ē��
1

T0

�T0

�p�

� ,

�50�

where

�r�p�,t� = −
����
�p�

−
T0

n̄

�n̄

�p�

�51�

is the mean fluid rotation frequency, consisting of a sum of �
and z-averaged E�B and diamagnetic drifts. In Eq. �50� we

may replace V̄�� /�z by V̄��� /�z since, by assumption, V̄
=0 if ��0 /�z�0 �see Eq. �31��.

From Eq. �50�, we see that nonzero s, and hence nonzero

transport, is caused either by nonzero �r, �V̄ /�p�, or �T0 /�p�

in the presence of a field error ��� /��; or by nonzero V̄ in
the presence of a z-electric field, −��� /�z. In either case the
transport limit, Eqs. �30� and �31� implies that s is of order
�� /T0	1, so that g	1, consistent with our approximation
of neglecting the first term on the left-hand side of Eq. �42�.

C. Formal solution for g

In order to solve Eq. �46� for g, we introduce the follow-
ing inner product:

�g,h� 
 	 d�dp�dzdpzf0g*h , �52�

and we define the adjoint operator L̂† with respect to this
inner product in the usual manner,27

�L̂†f ,g� 
 �f ,L̂g� . �53�

The specific form for L̂† is not needed here, but it can be
found by applying an integration by parts to the right-hand
side of Eq. �53�. By assumption, boundary terms in the inte-
gration by parts are dropped since we restrict ourselves to

functions f and g with homogeneous boundary conditions.

Now consider eigenfunctions �� and ��
† of L̂ and L̂† that,

respectively, satisfy

L̂�� = ���� �54�

and

L̂†��
† = ��

†��
† , �55�

subject to these same homogeneous boundary conditions,
where �� and ��

† are the corresponding eigenvalues. It is
easily proven that for each eigenfunction �� there is a cor-
responding “left eigenfunction” ��

† such that

��
† = �

�
*, �56�

and furthermore, if ��
† ��

�
* for some eigenfunctions ��

† and
��, then

���
† ,��� = 0. �57�

Finally, we note that there is a set of left eigenfunctions ��0�

† 

for which ��

† =0. These eigenfunctions are

��0�

† 
 = ���p� − p��
�,pz���p� − p��

�,�H� − Ē����p� − p��
�� .

�58�

This follows from taking f =�0�

† and g any function in Eq.
�53�,

�L̂†�0�

† ,g� = ��0�

† ,L̂g� . �59�

However, this inner product is equivalent to taking fluid mo-

ments of L̂g. Application of the fluid equations together with

Eq. �45� shows that ��0�

† , L̂g�=0 for any function g, and

therefore L̂†�0�

† =0.
The corresponding eigenfunctions ��0�


 have ��=0 ac-
cording to Eqs. �55� and �56�, and so are in the null space n

of L̂; they constitute homogeneous solutions to Eq. �46� that
also satisfy the aforementioned homogeneous boundary con-
ditions. In what follows we assume that ��0�


 spans the null
space n.

Using Eqs. �54� and �57�, the general solution to Eq. �46�
may be written as a sum over the eigenfunctions,

g = �
�

�
���

† ,s���

�����
† ,���

+ �
��n

a��0�
, �60�

where the a� are undetermined coefficients, and the prime on
the first sum indicates that only eigenfunctions outside the
null space are included �i.e., ���0�. The coefficients a� are
found by noting that, according to Eq. �35�,

��0�

† ,g� = 0 �61�

for every ��n. Since by Eq. �57�, ��0�

† ,���=0 if ��n, we
obtain
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�
��n

a���0�

† ,�0�
� = 0, ∀ � � n , �62�

and the only solution to this set of equations is a�=0 �barring
the possibility of degeneracies among the eigenfunctions�.
Therefore, the unique solution to Eq. �46� is

g = �
�

�
���

† ,s���

�a���
† ,���

. �63�

Equation �63� is an elegant formal solution to Eq. �43�,
but can be difficult to implement in practice as it involves the

determination of the set of left and right eigenfunctions for L̂.
Another approach that lends itself more easily to numerical

solutions is to note that the f0
−1�f0 /�t term in L̂ can be written

as

f0
−1�f0/�t = �1�p�,t� + pz��2�p�,t� + H��3�p�,t� , �64�

where the coefficient functions �1, �2, and �3 are related to
fluxes and forces via Eqs. �40�, �41�, �45�, and �20�–�22�. Let

us call the rest of L̂ an operator L̂1,

L̂1g = L̂g − f0
−1df0/dt = �g,H� − gs − Ĉ̄g , �65�

and write Eq. �46� as

L̂1g = s − �1 − pz��2 − H��3. �66�

We can then solve for g as a sum of four terms,

g = L̂1
−1s − L̂1

−1�1 − L̂1
−1�pz��2� − L̂1

−1�H��3� . �67�

Finally, the functions �1, �2, and �3 are determined by en-
suring that g satisfy the three constraint equations �35�.

The solution for g from either Eq. �63� or �67� can be
used to determine transport fluxes using Eqs. �40� and �41�.
However, in order to relate these fluxes to transport coeffi-
cients, further approximations are necessary. These approxi-
mations are described in the following section.

D. The local approximation

In general, the transport fluxes, Eqs. �40� and �41�, are

not linearly proportional to the forcing functions �r, V̄,

�T0 /�p�, and �V̄ /�p� that appear in the source function s �see
Eq. �50��. Rather, the transport is a �generally nonlinear�
functional of these four functions of p�. This can be seen by
cursory examination of Eq. �46�; the forcing functions appear
on both the left- and right-hand sides.

In order to simplify the solution for g and to extract
transport coefficients, we make the following “local” ap-
proximation. When the Poisson bracket in Eq. �46� is ex-
panded, the equation becomes

− �E
�g

��
−

��

��

�g

�p�

+ vz
�g

�z
−

��

�z

�g

�pz
− gs − Ĉ̄g +

1

f0

�f0

dt
= s ,

�68�

where �E=−�� /�p� is the E�B rotation frequency. Noting
that �� /Tb	1 in the transport limit, we drop the
�� /���g /�p� term from Eq. �68�, and also replace �E with
the equilibrium rotation frequency �0=−��0 /�p�. This ap-

proximation still allows particle trapping, although the orbit
is modified in the �� , p�� plane.28 The source function ap-
pearing on the left-hand side of Eq. �68� must also be modi-
fied so that the resulting operator has the symmetry proper-
ties necessary to satisfy Onsager relations. These
modifications have only a small effect �of order �� /T� on the
solution for g. Equation �68� then becomes

L̂�g + �1 + �2pz� + �3H� = s , �69�

where we substituted Eq. �64� for �f0 /�t, and where the local

operator L̂� is defined as

L̂� = Â − Ĉ̄ , �70�

and the operator Â is

Â = − �0
�

��
+ vz

�

�z
−

��

�z

�

�pz
+

1

2T0
��0

��

��
− V̄

��

�z
� . �71�

Equation �69� is linear in g and is local in p�, which allows
us to simplify the solution. We first note that s can be written
as

s = siFi/T0, �72�

where the Einstein summation notation is used, the four
source functions si, i=0. . .3, are defined as

�s0,s1,s2,s3
 
 � ��

�z
,
��

��
,pz�

��

��
,
H� − Ē�

T0

��

��
� �73�

and the forcing functions Fi are defined as

�F0,F1,F2,F3
 
 �V̄,− �r,
�V̄

�p�

,
�T0

�p�
� . �74�

Since Eq. �69� is linear in g and since Fi and �i are functions
only of p� and t, the solution to Eq. �69� can be written as

g =
giFi

T0
− �iGi, �75�

where G= �G1 ,G2 ,G3
 are solutions to

L̂�G = �1,pz�,H�
 
 � , �76�

and where g= �g0 , . . . ,g3
 are solutions to

L̂�g = s . �77�

The constants �i are then determined by the constraint con-
ditions �35�. It is convenient to express these using an inner
product,

��,g�p�
= 0, �78�

where this inner product is defined by its action on two func-
tions g and h,

�g,h�p�

	 d�dzdpzf0g*h . �79�

Substituting Eq. �75� into Eq. �78� and solving for �i, we
may then write the solution for g as
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g =
1

T0
�gj − Gk�kj�F j , �80�

where the 3�4 matrix �kj is defined by the solution to

��i,Gk�p�
�kj = ��i,gj�p�

, i = 1,2,3. �81�

Equation �80� shows that the perturbed distribution g is
linearly proportional to the forcing functions in the local ap-
proximation, allowing us to define a 4�4 matrix � of trans-
port coefficients. Substituting Eq. �80� into Eqs. �40� and
�41� and noticing that the functions si also appear in the
integral expressions for the fluxes, we find that the fluxes are
given by

�Fz,�n̄,�
V̄
� ,�

Ē
�/T0
 = − � · F , �82�

where the components of �ij of the transport coefficient ma-
trix � are

�ij =
1

T0
��si,gj�p�

− �si,Gk�p�
�kj� . �83�

Our convention will be that i and j run from 0 to 3, in
keeping with the notation of Eqs. �73� and �74�.

The coefficient �11 is of particular interest, as it is re-
lated to radial mobility and diffusive particle fluxes that will
be measured in the simulations described in Sec. III. Accord-
ing to Eqs. �27� and �51�, this transport coefficient is related
to a z and �-averaged radial particle flux given by

�r = � c

eBr
��11�−

���0�
�p�

−
T0

n̄

�n̄

�p�
� . �84�

Using Eq. �9� for p� allows Eq. �84� to be written as a sum of
a mobility and diffusive flux,

�r = �r�Fr� − Dr
�n̄

�r
, �85�

where �Fr�=−���0� /�r is the mean equilibrium force in the
radial direction,

Dr = � c

eBr
�2T0

n̄
�11 �86�

is the radial diffusion coefficient and

�r = n̄Dr/T0 �87�

is the radial mobility coefficient.
However, this is not the whole story. Equation �82� im-

plies that particle fluxes are also driven by gradients in the

temperature and by V̄. The full radial particle flux is

�r = �r�Fr� − Dr
�n̄

�r
− � c

eBr
�2��10V̄ + �12

�V̄

�r
+ �13

�T0

�r
� .

�88�

In particular, temperature-gradient-driven radial particle flux
is often neglected when interpreting experiments that study
transport due to static field errors, since the mobility flux
typically dominates over the particle flux driven by �T0 /�r,
unless �T0 /�r is large. If one takes the rotation frequency to

be of order �p
2 /2�c �as in a non-neutral plasma�, the ratio of

the temperature-gradient-driven and mobility fluxes is
��13 /�11��2�D

2 /r�� ln T0 /�r. On the other hand, for a plasma
maintained in steady-state by a rotating-wall field error,33 the
mobility flux can be made arbitrarily small, in which case the
temperature-gradient-driven particle flux cannot be ne-
glected.

The coefficient �00 is also of interest, as it describes the

drag force on a plasma moving at velocity V̄ẑ with respect to
a field error. This transport coefficient relates to Landau
damping and current drive as seen in the wave frame. Here
we see that the drag force is also affected by plasma rotation
and by gradients:

Fz = − ��00V̄ + �01�r + �02
�V̄

�p�

+ �03
�T0

�p�

� . �89�

Note that plasma rotation can interact with a field error to
generate a force in the axial direction through the transport
coefficient �01.

Radial energy and momentum transport is also driven by
field errors, as described by the final two rows of the trans-
port matrix. These energy and momentum fluxes are to be
distinguished from those arising from collisions in the ab-
sence of field errors.

E. Onsager relations

The transport coefficients �ij are inter-related due to
time-reversal symmetry of the dynamics underlying the local
approximation.29 To derive these relations, one defines the
time reversed-distributions gi

† and Gi
†, which satisfy equa-

tions obtained by reversing the sign of velocities and of the
magnetic field,

L̂�
†gi

† = si
†, �90�

L̂�
†Gi

† = �i
†, �91�

where

L̂�
† = − Â − Ĉ̄ , �92�

s† = � ��

�z
,
��

��
,− pz�

��

��
,
H� − Ē�

T0

��

��
� , �93�

and

�† = �1,− pz�,H�
 . �94�

Time-reversed transport coefficients �ij
† are obtained

from the time-reversed version of Eq. �83�,

�ij
† =

1

T0
��si

†,gj
†�p�

− �si
†,Gk

†�p�
�kj

† � . �95�

Noting that si
†= �si, with the lower sign only for i=2, and

replacing si by L̂�gi using Eq. �77�, Eq. �95� becomes
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�ij
† = �

1

T0
��L̂�gi,gj

†�p�
− �L̂�gi,Gk

†�p�
�kj

† �

= �
1

T0
��gi,L̂�

†gj
†�p�

− �gi,L̂�
†Gk

†�p�
�kj

† � . �96�

In the second line we introduce the adjoint operator to L̂�,
and note that by construction this adjoint operator is the

time-reversal of L̂�, given by Eq. �92�. Then Eqs. �90� and
�91� imply

�ij
† = �

1

T0
��gi,sj

†�p�
− �gi,�k

†�p�
�kj

† � . �97�

Taking the case j�2 so that sj
†=sj, and using Eq. �83� yields

�ij
† = � � ji �

1

T0
��sj

†,Gk�p�
�ki − �gi,�k

†�p�
�kj

† � . �98�

Substituting Eq. �90� for sj
† and applying the adjoint opera-

tion yields

�ij
† = � � ji �

1

T0
��gj

†,�k�p�
�ki − �gi,�k

†�p�
�kj

† �, j � 2.

�99�

Substituting Eq. �81� for the two inner products, using �k
†

= ��k, yields

�ij
† = � � ji �

1

T0
���k,G�

†�p�
��j

† �ki − ��k
†,G��p�

��i�kj
† � .

�100�

However, Eqs. �76� and �91� imply that ��k ,G�
†�p�

= ���
† ,Gk�p�

. Since k and � are both dummy variables, there
is a cancellation, leaving

�ij
† = � ji �101�

if both i and j are unequal to 2 and

�2j
† = − � j2 �102�

if j�2. By similar means, one finds for i= j=2 that

�22
† = �22. �103�

Equations �101�–�103� are the Onsager relations for electro-
static field-error transport.

A separate reflection symmetry further simplifies the

transport coefficient matrix in some cases. The operator L̂�

has the property that L̂�
† equals L̂� when viewed under re-

flected coordinates �→�+�, z→−z, provided that the po-
tential is symmetric under this reflection.

A similar reflection symmetry exists in the components
si of the source function, which leads to the result that, for
reflection-symmetric potentials,

�ij
† = �ij �104�

if both i and j are unequal to 2 or both i and j equal 2, and

�2j
† = − �2j ,

�105�
� j2

† = − � j2

for j unequal to 2.
When combined with the Onsager relations, this reflec-

tion symmetry leads to the simple result

�ij = � ji �106�

for all i and j. Even if the potential does not have the re-
quired reflection symmetry, one can show that Eq. �106� is
still satisfied in the linear response regime, where the kinetic
equation for g can be linearized in ��.

F. Entropy

The plasma entropy S also provides useful information
concerning transport coefficients.1,24 The entropy is defined
as

S = −	 d�f ln f , �107�

where d� is the phase-space element dzdpzd�dp�. The rate of
change of S is determined by the evolution of f ,

Ṡ = −	 d�
�f

�t
�ln f + 1�

=	 d�„�f ln f ,H� − �ln f + 1�Ĉf…

= −	 d� ln fĈf . �108�

In the second line we used Eq. �11� for �f /�t, along with the
identity

	 d��f ,g� = 0,

for any phase functions f and g that vanish at infinity; and in
deriving the third line we used Eq. �13�.

In the local approximation, Eq. �108� can be used to
place bounds on the transport coefficients. Writing f = f0�1
+g� and expanding Eq. �108� to second order in g yields the
expression

Ṡ = −	 d�f0gĈ̄g + O�g3� . �109�

In the local approximation it is useful to consider the rate
of change of entropy density, defined as

Ṡ�p�,t� = −	 dzdpzd�f0gĈ̄g . �110�

Substituting Eq. �69� and using and the constraint equa-
tion �78� yields

Ṡ = − �g,Âg − s�p�
. �111�

However, �g , Âg�p�
=0 because Â is an anti-Hermitian opera-

tor �one whose adjoint Â† equals −Â�. Therefore,
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Ṡ = �g,s�p�
. �112�

Substituting for g and s using Eqs. �72�, �80�, and �83� yields

Ṡ =
�ijFiF j

T0
. �113�

The second law then implies that

�ii � 0 and �114a�

4�ii� j j � ��ij + � ji�2, i � j . �114b�

Also, note that when the Onsager relations, Eqs.

�101�–�103�, are applied, Eq. �113� implies that Ṡ†= Ṡ. As
one might expect, time reversal has no effect on entropy
production.

Finally, we note that it is possible to couch Eq. �69� as a
variational principle involving the entropy production
rate.1,24,30 This can be useful in obtaining numerical solutions
for the transport coefficients. However, here we solve Eq.
�69� directly rather than employing a variational procedure.
For completeness, the variational formulation is provided in
Appendix A.

G. Uniqueness

Implicit in the preceding derivation of the transport co-
efficients is that the solution for the perturbed distribution
function is unique. We prove this here, by obtaining a logical
contradiction under the hypothesis that the solution is not
unique.

Let g1 and g2 be two different solutions to L̂�g=s for
some source function s. Then the difference �g=g1−g2 sat-

isfies the homogeneous equation L̂��g=0. We prove that
there is no nontrivial solution to this equation by considering

the inner product ��g , L̂��g�p�
. Using Eq. �70� for L̂�, this

inner product can be written as

��g,L�
ˆ �g�p�

= ��g,Â�g�p�
− ��g, Ĉ̄�g�p�

. �115�

However, the anti-Hermitian nature of Â implies that the first
inner product on the right-hand side vanishes. The second

inner product, −��g , Ĉ̄�g�p�
, is non-negative by the second

law of thermodynamics; see Eq. �110�. Thus,

��g,L̂��g�p�
= − ��g, Ĉ̄�g�p�

� 0, �116�

with equality only for trivial distributions that do not affect
the entropy, i.e., �g=1, pz� or H�. These functions are not
allowed by the constraint conditions, Eq. �35�. Since

��g , L̂��g�p�
must be greater than zero for any nontrivial �g,

there are no such functions that satisfy L̂��g=0. Therefore,

the solution to L̂��g=0 has only the trivial solution �g=0,
and this in turn implies that the solution for g is unique.

H. Nonconservative collisions

The previous results can be modified to allow collision
operators that do not conserve energy or momentum, but still
conserve the particle number. An example of such an opera-
tor is the Fokker–Planck operator

Ĉf = D
�

�pz
� �f

�pz
+

pz − mVb

mTb
f� , �117�

where D, Tb, and Vb are given functions of p�. We will couch
the following discussion in terms of this operator since it will
be used in numerical simulations described in the next sec-
tion. Physically, this operator describes collisions with a
background species at fixed temperature Tb�p��, moving with
axial velocity Vb�p��.

The theory of transport due to these nonconservative col-
lisions follows the same approach as the previous analysis.
Here, however, it now is best to define f0 in terms of Vb and

Tb rather than V̄ and T0, so that Ĉf0=0,

f0 =
N�p�,t�e−�H−pzVb�/Tb

�2�mTb

. �118�

Since energy and momentum are not conserved, it is neces-
sary only to ensure that n̄=�d�dzdpzf0. Thus, constraint
equations �35� are replaced by the single condition

	 d�dzdpzf0g = 0. �119�

Also, �f0 /�t= Ṅf0 /N so �2 and �3 can be set to zero in Eq.
�64�. Dissipative momentum and energy fluxes are then de-

fined in a frame moving with velocity Vb rather than V̄, and
are in terms of the temperature Tb rather than T0,

��
V̄
� ,�

Ē
�
 
 	 d�dzdpzf0g

��

�z
�pz�,H� − Ē�
 , �120�

where pz�= pz−mVb, H�= pz�
2 /2m+�, and Ē�
Tb /2+ ���.

Note that these fluxes differ from those appearing in the fluid
equations,

�
V̄
� = �

V̄
� + m�n̄�Vb − V̄� , �121�

�
Ē
� = �

Ē
� + �n̄�Ē� − Ē� + m

�Vb − V̄�2

2
� + �V��Vb − V̄� .

�122�

The definitions of particle flux �n̄ and the force Fz remain
unchanged.

The operator Â, the forcing functions Fi, and the source
functions si are also defined in terms of Vb and Tb rather than

V̄ and T0,

Â = − �0
�

��
+ vz

�

�z
−

��

�z

�

�pz
+

1

2Tb
��0

��

��
− Vb

��

�z
� ,

�123�
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F = �Vb,− �r,
�Vb

�p�

,
�Tb

�p�
� , �124�

and

s = � ��

�z
,
��

��
,pz�

��

��
,
�H� − Ē��

Tb

��

��
� . �125�

With these definitions the solution of the transport equation
for g is

g = giFi − �1G1, �126�

where, as before,

L̂�gi = si, �127�

L̂�G1 = 1, �128�

and where �1 is chosen to satisfy Eq. �119�,

�1 =
�1,gi�p�

Fi

�1,G1�p�

. �129�

Fluxes can then be related to forces via a new transport ma-
trix,

�Fz,�n̄,�
V̄
� ,�

Ē
�/Tb
 = − � · F , �130�

where

�ij =
1

Tb
��si,gj�p�

−
�1,gj�p�

�1,G1�p�

�si,G1�p�� . �131�

It is not difficult to show that these transport coefficients also
satisfy the Onsager relations, Eqs. �101�–�103�, and inequali-
ties �114� also hold.

III. SIMULATIONS

We have performed computer simulations of field error
transport in order to test the theory. In these simulations the
Hamiltonian equations of motion given by Eq. �8� are nu-
merically integrated forward in time, but the parallel force
law is modified in order to include a nonconservative colli-
sional drag term,

dpz

dt
= −

��

�z
− m��vz − Vb� , �132�

where � is the collision frequency and Vb is a given back-
ground velocity. Both � and Vb are taken to be constant. The
drift-kinetic equations of motion are integrated using a stan-
dard fourth-order Runge–Kutta algorithm with constant time
step size �t. To account for collisions, after each time step a
random momentum �p, uniformly distributed in the range
−p0��p� p0, is added to pz. According to the theory of
Langevin dynamics, this random momentum step combined
with the drag force in Eq. �132� is equivalent to a Fokker–
Planck collision operator acting on the particle distribution,
given by Eq. �117�. The temperature Tb is related to the
simulation parameters via the Einstein relation

Tb =
p0

2

6m��t
. �133�

The collision operator does not conserve momentum or en-
ergy, but does of course conserve particle number.

The simulations follow N particles with random initial
conditions. All particles are started at the same radius r0 but
are distributed randomly in vz, z, and � according to the
Boltzmann distribution exp�−�H− pzVb� /Tb�.

To measure particle transport, the simulations follow two
quantities: the mean change in radial position of the par-
ticles,

��r� = N−1�
i=1

N

�ri�t� − ri�0�� , �134�

and the mean squared change in radial position,

��r2��t� = N−1�
i=1

N

�ri�t� − ri�0��2. �135�

The mean position varies linearly with time over long times
compared to the collision frequency but short compared to
the time to change radial position by order r0; and its rate of
change is related to the mobility coefficient �r via

n̄
d

dt
��r� = �r�Fr� . �136�

�This assumes that axial velocity and radial gradients in tem-
perature can be neglected.� The mean square change in radial
position is related to the radial diffusion coefficient,

d

dt
���r2� − ��r�2� = 2Dr. �137�

Finally, both �r and Dr are related to the transport coefficient
�11 through Eqs. �86� and �87�, so Eqs. �136� and �137�
provide independent measurements of �11. In simulations
with N values of a few thousand, ��r2� is generally deter-
mined with less error than ��r�.

Other transport coefficients can also be measured in
these simulations. In relation to current drive, the momentum
fluid equation corresponding to the collision operator of Eq.
�117� is

mn̄
�V̄

�t
+

��V�

�p�

+ m�n̄
�V̄

�p�

− Fz = − mn̄��V̄ − Vb� . �138�

On the transport time scale, V̄ approaches an equilibrium

with �V̄ /�t=0. A measurement of V̄−Vb, obtained by sum-
ming over all particles, then provides a measurement of Fz,

Fz = N−1�
i=1

N

mn̄��vi − Vb� . �139�

Comparison of the value of the right-hand side to Eq.
�89� then yields information on various transport coeffi-
cients, such as �00 and �01.

In principle, other transport coefficients driven by gradi-
ents in Vb and Tb can also be determined by simulations of
the type described here. For example, the coefficient �13 can
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be evaluated by measuring the radial drift velocity d��r� /dt
due to a temperature gradient. However, care must be taken
to subtract out the mobility drift given by Eq. �136�, and to
account for other effects of the temperature gradient. In par-
ticular, the radial diffusion coefficient depends on tempera-
ture, and so a temperature gradient can create a radial drift
due only to the diffusive term, since particles in a tempera-
ture gradient will diffuse at different rates depending on tem-
perature, creating an overall radial drift. This can be seen by
generalizing Eq. �136� to include temperature gradients, as
found by integrating Eq. �88� over radius,

d

dt
��r� =

�r

n̄
�Fr� + � �Dr

�r
�

T
+ � �Dr

�T
− � c

eBr
�2�13

n̄
� �T

�r
.

�140�

IV. EXAMPLES

In this section we consider three examples of field error
transport of increasing complexity: a plasma that is periodic
in z; a finite-length plasma; and a finite-length plasma to
which an extra “squeeze” potential is added. In each case we
calculate transport coefficients and then compare to simula-
tions that measure some of these coefficients. In all three
examples we use the nonconservative collision operator, Eq.
�117�.

A. Example 1: Periodic boundaries in z

In the first, simplest example, we assume periodic
boundary conditions in z and a sinusoidal field error of am-
plitude ��p�� with axial wavenumber k and � wavenumber �.
The Hamiltonian for the motion is

H =
pz

2

2m
+ �0�p�� + ��p��cos��� + kz� , �141�

where � / T̄	1 is assumed. For this Hamiltonian, the motion
is integrable due to the existence of a constant of the motion
P, where

P = p� − �pz/k . �142�

Consequently, a confined thermal equilibrium exists with a
Boltzmann distribution given by

feq =
n0

�2�mTb

exp�− �H + �rP�/Tb� , �143�

where n0 is a uniform density, �r is the �uniform� fluid rota-
tion frequency, and Tb is the �uniform� temperature. This
distribution is a shifted Maxwellian moving with axial veloc-
ity Veq, where

Veq = ��r/k . �144�

If Vb=Veq and f = feq, Eq. �11� implies that �f /�t=0 since

�feq ,H�=0 and Ĉfeq=0. One can also see that transport van-
ishes in thermal equilibrium from the form of the source
function s for field errors with combined � and z dependence
��+kz,

s = −
1

T

��

��
��r −

kVb

�
− pz�

�Vb

�p�

−
H� − Ē�

Tb

�Tb

�p�
� . �145�

The source clearly vanishes when Vb=Veq and Tb is uniform,
the conditions for thermal equilibrium.

Note that �r and Vb appear in s in the combination

�r� = �r − kVb/� , �146�

the Doppler-shifted fluid rotation frequency. Since � /�z can
be replaced by �k /��� /��, the flux equation �130� can be
simplified to a 3�3 form,

��n̄,�
V̄
� ,�

Ē
�/Tb
 = �̂ · ��r�,

�Vb

�p�

,
�Tb

�p�
� , �147�

where �̂ is a 3�3 transport matrix obtained by dropping the
leftmost column and topmost row of �. In other words �̂ij

=�ij with i and j in the range 1–3. Also, the force Fz is
related to �n̄ via

Fz =
k

�
�n̄. �148�

1. Linear solution

If we linearize Eq. �127� in ��, using Eq. �141� and
assuming that g is of order ��, the equation becomes

�− �0 +
kvz

�
� �g

��
− Ĉ̄g = s , �149�

where

s =
��

��
�1,pz�,pz�

2/2mTb − 1/2
 . �150�

This equation can be solved by Fourier analysis in z and �,
and expansion in momentum basis functions. Since Eqs.

�117� and �48� imply that the operator Ĉ̄ is the Hermite op-
erator,

Ĉ̄g = D� �2g

�pz
2 −

pz�

mTb

�g

�pz
� , �151�

we choose the momentum basis functions to be this opera-
tor’s eigenfunctions, the Hermite polynomials

Hn̄�pz� /�2mTb�,

g = �
n̄=0

�

g̃n̄Hn̄� pz�

�2mTb
�ei���+kz� + c.c. �152�

Substituting this expansion into Eq. �149�, multiplying by
another Hermite polynomial Hn�pz� /�2mTb�, and integrating
over pz yields a matrix equation for the Fourier coefficients
g̃n̄,

�
n̄=0

�

Lnn̄g̃n̄ = s̃n, �153�

where
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s̃n =
��

2
��n0,mv̄/�2�n1,�n2/4
 , �154�

Lnn̄ = �− i�n − ��0���nn̄ +
kv̄
�2

��n̄,n−1 + 2n̄�n̄,n+1� , �155�

v̄=�Tb /m is the thermal speed, �0�=�0−kVb /� is the
Doppler-shifted E�B rotation frequency, and �=D /mTb is
the collision frequency. A solution to Eq. �153� can be ob-
tained numerically by matrix inversion. Since � and k are
unequal to zero by assumption, g automatically satisfies the
constraint condition �119� so the linearized transport coeffi-
cients are

�ij =
1

Tb
	 d�dzdpzf00sigj , �156�

where f00 is the linearized version of f0,

f00 =
N

�2�mTb

e−�H0−Vbpz�/Tb, �157�

and

H0 = pz
2/2m + �0. �158�

Using orthogonality of the Hermite polynomials and
Fourier modes, Eq. �156� can be written as

�ij =
2

Tb
n̄�

n=0

�

2nn!Im�s̃nig̃nj� . �159�

Here i and j run from 1 to 3 and pick out one of the three
components of the vectors s̃n and g̃n appearing in Eqs. �152�
and �154�. According to Eq. �154�, in Eq. �159� only the n
= i−1 term survives in the sum. Thus,

�ij = 2n̄/Tb2i−1�i − 1�!Im�s̃i−1,ig̃i−1,j� . �160�

Also, for this example, several of the coefficients are related
to one another. These relations are summarized by the matrix
expression

�̂ =�
�11

m��0�

k
�11 �13

m��0�

k
�11 �m��0�

k
�2

�11

m��0�

k
�13

�13
m��0�

k
�13 �33

� . �161�

Thus, we only need calculate �11, �13, and �33. Furthermore,
these coefficients, when suitably scaled, can be written as
functions of only two dimensionless arguments, ��0� /kv̄, and
� /kv̄,

��11,�13,�33
 =
n̄

Tb

�2�2

kv̄
��̄11,�̄13,�̄33
 , �162�

where �̄11, �̄13, and �̄33 are dimensionless functions of the
two arguments. These three dimensionless functions are plot-
ted in Figs. 1 and 2 versus � /kv̄ and ��0� /kv̄.

In Fig. 1, taking the limit � /kv̄→0 yields the plateau-
regime values of the scaled transport coefficients. The depen-
dence of the coefficients on ��0� /kv̄ will be derived in Sec.
IV A 2. Note that while �11 and �33 are both non-negative,
as required by Eq. �114a�, �13�0 for ��0� /kv̄�1. For large
� /kv̄ �i.e., the fluid regime�, one can see from Fig. 1 that the
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FIG. 1. �Color online� Surface plots of the three scaled transport coefficients
�̄11, �̄13, and �̄33 as functions of collision frequency � and Doppler-shifted
E�B rotation frequency �0� for the infinite-length plasma of example 1,
using linearized theory.
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coefficients have no simple dependence on � /kv̄. For ex-
ample, for �0�=0, �11�� for large � /kv̄ but for �0��0, �11

�1 /�. The functional form of the coefficients in the fluid
regime is derived in Sec. IV A 3.

In Fig. 2, the coefficients are plotted on a logarithmic
scale for two values of ��0� /kv̄ and for � /Tb=0.1 and com-
pared to the results of simulations that measure �11 and �in
one case� �13 as described in Sec. III. The linear theory
described above is plotted as thick dashed lines, and agrees
with the simulation results except when � /kv̄ is small. The
discrepancy at small � /kv̄ occurs because the linear theory
does not include trapping in banana orbits, which becomes
important when Eq. �4� is satisfied. For � /Tb=0.1 this ba-
nana regime corresponds to � /kv̄�0.03, which is roughly
where one observes a divergence between the linear theory
and the simulations. A fully nonlinear numerical evaluation
of the theory �given by the solid lines� and an asymptotic
analytical theory �given by the thin dashed lines�, both do a
good job of matching the simulation results in the banana
regime. These theory results are described in Sec. IV A 4.

2. Plateau regime

In the regime �	kv̄, the linear theory results become
independent of �. In this “plateau” regime the form of the

collision operator is unimportant, so we replace Ĉ̄g by −�g
in Eq. �149� which allows the analytic solution,

g =
��

2

ei���+kz�

kvz − ��0 − i�
�1,pz�,

pz�
2

2mTb
−

1

2
� + c.c. �163�

Substituting into Eq. �156� and applying the Plemelj formula
to evaluate the pz integral yields

��̄11,�̄13,�̄33� =��

2
exp�− �2�0�

2/2k2v̄2�

��1

2
,
1

4
����0�

kv̄
�2

− 1�,
1

8
����0�

kv̄
�2

− 1�2� .

�164�

These limiting forms are plotted in Fig. 2. Their scaling
agrees with Eq. �7�. Note that if ��0� /kv̄=1 �the case shown
in Fig. 2�b�� the coefficients �13 and �33 vanish in the pla-
teau regime.

3. Fluid regime

When ��kv̄, the solution to Eq. �153� can be obtained
as an expansion in 1 /�. The first three equations taken from
Eq. �153� are

�2kv̄g̃1 − ��0�g̃0 =
��

2
�1,0,0
 , �165�

2�2kv̄g̃2 − ���0� + i��g̃1 +
kv̄
�2

g̃0 =
��

2 �0,
mv̄
�2

,0� , �166�

3�2kv̄g̃3 − ���0� + 2i��g̃2 +
kv̄
�2

g̃1 =
��

2
�0,0,1/4
 . �167�

These equations can be thought of as equations for the nona-
diabatic response to the field error of the density, fluid veloc-
ity, and temperature, respectively. The form of these equa-
tions implies that g̃n=O�1 /��� g̃n−1, and so for large � it is
acceptable to drop higher n terms. For �11, we need keep
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FIG. 2. �Color� The transport coefficients �11 �red�, �13 �blue�, and �33 �black� vs collision frequency �, scaled according to Eq. �162�, for the infinite length
plasma of example 1, with an �=1 asymmetry with amplitude �=0.1Tb, and for two different Doppler-shifted E�B rotation frequencies. �a� �0� /kv̄=0; �b�
�0� /kv̄=1. Thick dashed lines display the linearized theory as in Fig. 1. Solid lines display the full nonlinear theory. Dotted lines are the plateau limit,
dotted-dashed lines are the fluid limit, and the thin dashed lines are the banana limit. Open squares and circles are simulation results for �11 based on Eqs.
�136� and �137�, respectively. The single solid square in �a� is a simulation result for �13 using Eq. �140�.
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only g̃0 and g̃1, setting g̃n zero for n�2. The solution of Eqs.
�165� and �166� is then

g̃0 =
��

2

���0� + i�,kv̄,0


k2v̄2 − ��0����0� + i��
, �168�

g̃1 =
��

2�2

�kv̄,− ��0�,0


k2v̄2 − ��0����0� + i��
. �169�

When applied to Eq. �159� we obtain, after simplification by
dropping terms of higher order in 1 /�,

�11 =
n̄

2Tb
�2�2 k2v̄2�

�2�0�
2�2 + k4v̄4 . �170�

For �13 and �33, we must also keep g̃2, but may set g̃3=0 in
Eq. �167�. The solution yields, to lowest order in 1 /�,

�13 = −
n̄

8Tb
�2�2k2v̄2

�

2k2v̄2 − 3�2�0�
2

�2�0�
2�2 + k4v̄4 , �171�

and

�33 =
n̄

8Tb

�2�2

�
. �172�

These functions are plotted in Fig. 2, and agree with the
general linear theory when � /kv̄�1. It should be noted how-
ever that the functional form of these coefficients depends on
the detailed form of the collision operator. Here we em-
ployed a Fokker–Planck operator that does not conserve mo-
mentum or energy. An energy conserving operator would
give different results in the fluid regime. An example is
worked out in Appendix B for the case of the Dougherty
collision operator.31

4. Banana regime

When the collision frequency is sufficiently small, such
that Eq. �4� is satisfied, the previous linear analysis of the
transport coefficients is no longer valid. As we discussed in
the Introduction, the effect of particles trapped, or nearly
trapped, in the potential wells of the field error then domi-
nates the transport.

Here we present an asymptotic analysis of the transport
in this regime, valid for � /kv̄→0. The approach we use is
similar to that taken by many previous authors; for example,
for the case of a collisionally damped BGK wave,13 and for
the case of tokamak or stellarator transport.2,24 The perturbed

distribution functions gi, i=1,2 ,3 satisfy L̂�gi=si, which
when written out in full becomes

� kpz�

m�
− �0�� �g

��
−

k

�

��

��

�g

�pz�
+

�

Tb

��

��
g

− D� �2g

�pz�
2 −

pz�

mTb

�g

�pz�
� =

��

��
�1,pz�,

H� − Ē�

Tb
� .

�173�

Here we have chosen Eq. �151� as a specific form for the
collision operator. We have also introduced the parameter
�=�0� /2. Recall that in Sec. II D the value of this parameter

was chosen so that L̂� satisfied Onsager symmetries, using
the argument that changes in its value have a negligible ef-
fect on transport. We will prove this to be the case by allow-
ing � to be a free parameter in the equations, and showing
that the results are independent of � to lowest order in �.

The source functions on the right-hand side of Eq. �173�
can be eliminated or reduced in magnitude by means of the
following substitution:

g = �Tb

�
,
Tb

�
�pz� +

kTb

��
�,

1

�
�H� − Ē�� +

Tb�0

�2 � + �g ,

�174�

implying that �g satisfies

� kpz�

�m
− �0�� ��g

��
−

k

�

��

��

��g

�pz�
+

�

Tb

��

��
�g

− D� �2�g

�pz�
2 −

pz�

mTb

��g

�pz�
�

= �0,−
Dpz�

m�
,−

D

m�
� pz�

2

mTb
− 1�� . �175�

Before proceeding further, we introduce scaled variables
�̂=��0� /kv̄, �̂=�� /kv̄, �̂=�D /mTbkv̄, �̂=� /Tb, �̂=� /Tb,
and p̂= pz� /mv̄− �̂, where v̄=�Tb /m is the thermal speed. We
also introduce a transformation of �g via

�g =
�mv̄

k
e�̂p̂h��, p̂� . �176�

The equation for h is

p̂
�h

��
−

��̂

��

�h

�p̂
− �̂� �2h

�p̂2 + �2�̂ − �̂ − p̂�
�h

�p̂

+ �̂��̂ − �̂ − p̂�h� = −
�̂

�̂
e−�̂p̂�0,mv̄�p̂ + �̂�,�p̂ + �̂�2 − 1
 .

�177�

Introducing the scaled energy E, where

E =
p̂2

2
+ �̂��� , �178�

we change variables from p̂ to E in Eq. �177�, yielding

� p̂
�h

��
�

E
− �̂p̂� �

�E
p̂

�h

�E
+ �2�̂ − �̂ − p̂�

�h

�E

+ �̂��̂ − �̂ − p̂�h�
= −

�̂

�̂
e−�̂p̂�0,�p̂ + �̂�,�p̂ + �̂�2 − 1
 , �179�

where p̂ is now regarded as a function of E and �,

p̂ = � �2�E − �̂���� . �180�

Equation �179� is exact, but an exact nontrivial solution can-
not be found analytically. Here we expand the solution in
powers of �̂, writing
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h = h0 + �̂h1 + ¯ . �181�

Then to lowest order in �̂, Eq. �179� is simply

� �h0

��
�

E
= 0, �182�

with the solution h0=h0�E�. The functional form of h0 is
determined by the next-order equation,

� p̂
�h1

��
�

E
= p̂� �

�E
�p̂

�h0

�E
� + �2�̂ − �̂ − p̂�

�h0

�E

+ �̂� �̂ − �̂

p̂
− 1�h0�

−
e−�̂p̂

�̂
�0,mv̄�p̂ + �̂�,�p̂ + �̂�2 − 1
 . �183�

For untrapped particles with energy E
�̂, we integrate
Eq. �183� from �=0 to �=2�. The boundary condition that
h1��=0,E�=h1��=2� ,E� then yields the following differen-
tial equation for h0�E�:

0 =
�

�E
�I

�h0

�E
� + �2�̂ − �̂ − I�

�h0

�E

+ �̂���̂ − �̂�� − 1�h0 + z�E�, E 
 �̂ , �184�

where

z�E� = −
1

�̂
	

0

2� d�

2�

e−�̂p̂

p̂
�0,mv̄�p̂ + �̂�,�p̂ + �̂�2 − 1


�185�

and I�E� and ��E� are the action and period per radian, re-
spectively, of the untrapped motion,

I�E� = 	
0

2� d�

2�
p̂�E,�� , �186�

��E� =
�I

�E
= 	

0

2� d�

2�p̂�E,��
. �187�

Note that I and � are positive for p̂
0 and negative for p̂
�0. The corresponding solutions to Eq. �184� will be called
h0

+ and h0
−, respectively.

For trapped particles with energy −�̂�E��̂, we per-
form an integral in � over a cycle of the trapped particle
orbit. The condition that h1 is a single-valued function of �
leads to the following equation for h0:

0 =
�

�E
�It

�h0

�E
� − It

�h0

�E
+ �̂��̂ − �̂��th0 + zt, �E� � �̂ ,

�188�

where

zt = −
1

�̂
� d�

2�

e−�̂p̂

p̂
�0,mv̄�p̂ + �̂�,�p̂ + �̂�2 − 1
 �189�

and It and �t are the action and period per radian, respec-
tively, of the trapped motion,

It = � d�

2�
p̂ , �190�

�t =
�It

�E
= � d�

2�p̂
. �191�

In Eqs. �189�–�191�, the integral �d� denotes an integration
over a single orbital cycle of the trapped motion, holding
energy E fixed.

Equations �184� and �188� are second-order inhomoge-
neous ordinary differential equations �ODEs� for h0�E�. We
will solve these ODEs using the method of variation of pa-
rameters, which requires knowledge of the homogeneous so-
lutions to the ODEs.

We first consider the homogeneous solutions of the un-
trapped ODE, Eq. �184�. In the range E��̂,

I�E� � � �2E, ��E� � � 1/�2E, E � �̂ , �192�

when the � signs refer to untrapped particles with p̂ greater
or less than zero, respectively.

In this range the homogeneous solutions, v1�E� and
v2�E�, are

v1�E� = e��̂�2E�1 + ��/2�̂e−�̂2/2�erfi���E + �̂/�2�

− erfi��̂/�2���, E � �̂ , �193�

v2�E� = e��̂�2E, E � �̂ , �194�

where erfi�x�=2 /���0
xez2

dz is the error function with an
imaginary argument.

Furthermore, we can show that the homogeneous solu-
tions are finite at E= �̂, with finite first derivatives. Noting
that I=O���̂� as E→ �̂, and �=O�1 /��̂�, with an integrable
singularity as E→ �̂, we solve Eq. �184� in the asymptotic
limit E	1 for the two homogeneous solutions. These satisfy
the following dominant balances in the ODE:

�

�E
�I

�v2

�E
� = 0, E 	 1 �195�

and

�� �v1

�E
+ �̂��̂ − �̂�v1� = 0, E 	 1. �196�

The general solution to Eq. �195�,

v2 = C1 + C2	
�̂

E dE

I
�197�

can be matched to the outer solution for v2, given by Eq.
�194�. To lowest order in �, the matching conditions on the
function and its first derivative require C1=1 and C2=−�̂.
Thus,

v2 = 1 − �̂	
�̂

E dE

I
+ O�E�, E 	 1. �198�

The solution to Eq. �196�,
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v1 = C1e−�̂��̂−�̂�E, E 	 1 �199�

can be matched to the outer solution, Eq. �193�, by taking
C1=1. Thus

v1 = 1 − �̂��̂ − �̂�E + O�E3/2�, E 	 1. �200�

The inhomogeneous solution to Eq. �184� can be constructed
from v1 and v2,

h0�E� = v2�E�	
�̂

E

dE�
v1�E��z�E��
I�E��W�E��

− v1�E�	
�

E

dE�
v2�E��z�E��
I�E��W�E��

+ �1v2�E�, E 
 �̂ ,

�201�

where �1 is a vector of undetermined coefficients and the
Wronskian W is defined as

W�E� = v1�v2 − v2�v1. �202�

The integration limit on the second integral is chosen so that
inner products involving h0 are finite �since as E→�, v1

→� like eE�.
In the regime E��, the solution for h0 can be found by

using Eqs. �192� and �194�, along with

z�E� = �
e��̂�2E

�̂�2E
�0,mv̄��̂ � �2E�,��̂ � �2E�2 − 1
,

E � � . �203�

To lowest order in �, the integration limit on the first integral
in Eq. �201� can be changed from �̂ to zero. The integrations
then yield

h0 = −
e��̂�2E

�̂2 �0,mv̄�1 � �̂�2E�,�̂ + �̂�E � �̂�2E�


+ �1e��̂�2E, E � �̂ . �204�

Turning now to the solution for h0 in the trapping region
−�̂�E��̂, we consider the homogeneous solutions to Eq.
�188�, vt1�E� and vt2�E�. Just as for the untrapped solution
when E	1, there are two consistent dominant balances in
Eq. �188� that describe the two homogeneous solutions,

d

dE
�It

dvt1

dE
� = O� 1

��̂
� , �205�

d

dE
vt2 + �̂��̂ − �̂�vt2 = O��̂� . �206�

Equation �205� has the general solution

vt1 = C1 + C2	
�̂

E dE

It
+ O��̂3/2� . �207�

Since It→ �E+ �̂� /�t as E→−�̂, where �t=�� is the fre-
quency of harmonic oscillations, vt1 is logarithmically diver-
gent as E→−�̂.

Equation �206� has the solution

vt2 = e−�̂��̂−�̂��E−�̂� + O��̂2� . �208�

The trapped solution for h0 can be constructed from vt1 and
vt2,

h0�E� = vt2�E�	
+�̂

E dE�vt1�E��zt�E��
It�E��Wt�E��

− vt1�E�	
−�̂

E dE�vt2�E��zt�E��
It�E��Wt�E��

+ �2vt2�E�, �E� � �̂ ,

�209�

where Wt=vt1� vt2−vt2� vt1, and �2 is a vector of undetermined
coefficients. A continuous solution for h0 across the separa-
trix can be found by choosing �1 and �2 appropriately.
Matching the inner and outer values of h0 at E= �̂ yields

�1 + v1��̂�	
�̂

� dE�v2�E��z�E��
I�E��W�E��

= �2 − vt1��̂�	
−�̂

�̂ dE�vt2�E��zt�E��
It�E��Wt�E��

. �210�

The integral on the right-hand side yields a result of O���̂�.
The integral on the left-hand side can be determined approxi-
mately by using the E��̂ forms of I, v1, v2, and z from Eqs.
�192�–�194� and �203�. The result of the integration yields

�1 −
1

�̂2 �0,mv̄,�̂� = �2 + O���̂� . �211�

Although h0�E� is continuous across the separatrix, �h0 /�E
is not. The jump in the first derivative is given by subtracting
the derivatives of Eqs. �201� and �209�,

�h0��̂+�
�E

−
�h0��̂−�

�E
= −

�̂�1

I��̂�
− �̂��̂ − �̂�	

�

�̂

dE�
v2�E��z�E��
I�E��W�E��

+ �2�̂��̂ − �̂�

+
�

�E
vt1��̂�	

−�̂

�

dE�
vt2�E��zt�E��
It�E��Wt�E��

. �212�

The integral from −�̂�E��̂ is of the order ��̂, while the
integral from �̂�E�� is of order unity. Therefore, we can
neglect the integrals to lowest order in �̂, obtaining

�h0��̂+�
�E

−
�h0��̂−�

�E
= −

�̂�1

I��̂�
+ O�1� . �213�

Finally, �1 is determined via the constraint condition
�1,g�p�

=0. To lowest order in �̂ and � the trapping region
can be neglected in this inner product, and the E��̂ form of
h0, given by Eq. �204�, can be substituted for h,
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0 = �1,g� �
N

�2�mT
	 d�dzdpze

�pz�
2/2m−mVb

2/2�/Tb

���Tb

�
,
Tb

�
�pz� +

kTb

��
�,

1

�
� pz�

2

2m
−

Tb

2
� +

Tb�0

�2 �
+ ��1 −

1

�̂2 �0,mv̄�1 + �̂p̂�,�̂

+ �̂�p̂2/2 + �̂p̂�
��mv̄

k
� , �214�

where pz�=mv̄�p̂+ �̂� and E� p̂2 /2. After performing the in-
tegrations we obtain

�1 = −
1

�̂
�1,mv̄�̂,

�̂2 − 1

2
� . �215�

We now use these results to evaluate the transport coef-
ficients �ij. Since �1,gi�p�

=0, Eq. �131� implies

�ij =
1

Tb
�si,gj�p�

. �216�

The required inner product, written in terms of hj using Eqs.
�174� and �176�, is

�s,gj�p�
=

�mv̄Tbn̄e−�̂2/2

�2��3/2k
	 d�dp̂e−E+��̂−�̂�p̂hj

��̂

��

� �1,mv̄��̂ + p̂�,E + �̂p̂ +
�̂2 − 1

2
− �̄/Tb� .

�217�

We have also substituted for s using Eq. �125�, in terms of
scaled variables. The integrals may be manipulated into a
more useful form by first converting the p̂ integral to one
over energy, noting that dp̂=dE / �p̂��E ,�� and ��p̂� /��

=−��̂ /�� / �p̂�,

�s,gj�p�
= −

�mv̄Tbn̄e−�̂2/2

�2��3/2k
	 d�dEe−E��p̂�

��
�hj

+e��̂−�̂��p̂�

��1,mv̄��̂ + �p̂��,E + �̂�p̂� +
�̂2 − 1

2
−

�̄

Tb
�

+ hj
−e−��̂−�̂��p̂��1,mv̄��̂ − �p̂��,E − �̂�p̂�

+
�̂2 − 1

p̂
−

�̄

Tb
�� . �218�

Here, hj
+ and hj

− refer to solutions for hj at positive and nega-
tive p̂, respectively. It is possible to integrate this expression
by parts in �,

�s,gj�p�
=

�mv̄Tbn̄e−�̂2/2

�2��3/2k
	 d�dEe−E �p̂�

�̂ − �̂
� �hj

+

��
e��̂−�̂��p̂�

��1,mv̄��̂ −
1

�̂ − �̂
+ �p̂��,E + �̂�p̂� −

�̂

�̂ − �̂

+
�̂2 − 1

2
−

�̄

Tb
� −

�hj
−

��
e−��̂−�̂��p̂�

��1,mv̄��̂ −
1

�̂ − �̂
− �p̂��,E − �̂�p̂�

−
�̂

�̂ − �̂
+

�̂2 − 1

2
−

�̄

Tb
�� . �219�

The derivatives �hj
+ /�� and �hj

− /�� are given in perturbation
theory by Eqs. �181� and �183�. For E��̂, where p̂

→ ��2E, Eqs. �183�, �184�, and �193� imply that �hi
� /��

→0. Therefore, we only require �hi /�� for E�O��̂�, which
implies �p̂ ��O���̂�	1. We may then Taylor expand the ex-
ponential to first order,

e���̂−�̂��p̂� � 1 � ��̂ − �̂��p̂� . �220�

Noting that �0
2�d��hj

� /��=0 for untrapped particles, and
�d��hj /��=�d���hj

+ /��−�hj
− /���=0 for trapped particles,

many terms cancel. Keeping other terms only to lowest order
in �̂ yields the simple expression

�s,gj�p�
=

�mv̄Tbn̄e−�̂2/2

�2��3/2k
�̂	 d�dE�p̂�� �hj

+

��
+

�hj
−

��
� ,

�221�

where

�̂ = �1,mv̄�̂,
�̂2 − 1

2
� . �222�

Substituting Eqs. �181� and �183� for �hi
� /��, we obtain

three contributions to the integral: from the trapped region,
the untrapped region, and the jump in �hj /�E at the separa-
trix. Only the latter two contributions are important when �̂
	1, so we will not further consider the trapped contribution.
Then the transport coefficient �ij is, to lowest order in �̂,
given by

�ij =
�mv̄n̄e−�̂2/2

��k
�̂i�̂�2�̂� �h0j

+ ��̂+�
�E

−
�h0j

+ ��̂−�
�E

−
�h0j

− ��̂+�
�E

+
�h0j

− ��̂−�
�E

� + 	
�̂

�

dE�2E
�2h0j

+

�E2

+ ��2�̂ − �̂��I� − 2E + 1�
�h0j

+

�E
+ �̂��̂ − �̂ − �I��h0j

+

− 2E
�2h0j

−

�E2 + ��2�̂ − �̂��I� + 2E − 1�
�h0j

−

�E

+ �̂��̂ − �̂ − �I��h0j
− �� . �223�
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Here we have used the fact that the inhomogeneous terms in
Eq. �183� for p̂
0 and p̂�0 cancel to lowest order in �̂. The
jump in the first derivative of h0j across the separatrix is
given by Eq. �213�. We next simplify the integral by substi-
tuting for �2h0j

� /�E2 using Eq. �184�,

�ij =
�mv̄n̄e−�̂2/2

�2�k
�̂i�̂�− 4�̂�1j

�̂

�I��̂��

+ 	
�

�

dE���I� −
2E

�I� ���2�̂ − �̂�� �h0j
+

�E
+

�h0j
−

�E
�

− �̂�h0j
+ + h0j

− �� + �1 −
2E���

�I� �
�� �h0j

+

�E
−

�h0j
−

�E
+ �̂��̂ − �̂��h0j

+ − h0j
− ���� . �224�

The functions �I�−2E / �I� and 1−2E��� / �I� are nonzero only
for E� �̂, so E	1 forms of h0j and �h0j /�E may be em-
ployed. Furthermore, it is easily seen that

	
�̂

�

dE��I� −
2E

�I� � = O��̂3/2� �225�

and

	
�̂

�

dE�1 −
2E���

�I� � = O��̂� . �226�

This implies that, to lowest order in �̂, only the term in the
integral involving �h0j

+ /�E−�h0j
− /�E need be kept. Further-

more, these derivatives may be replaced to lowest order by
�1j�v2j

� /�E, since the other terms in Eq. �201� yield a com-
paratively negligible contribution. Using Eq. �198� to deter-
mine �v2j /�E near E= �̂ then yields

�ij =
�mv̄n̄e−�̂2/2

�2�k
�̂i�̂�− 4�̂�1j

�̂

�I��̂��

− 2�̂�1j	
�̂

� dE

�I� �1 −
2E���

�I� �� . �227�

Using Eq. �215� for �1j, the remaining dependence on �̂
cancels and we are left with the following simple asymptotic
expression for transport coefficients in the banana regime:

�ij =� 2

�

�mv̄n̄

k
�̂e−�̂2/2�̂i�̂ j� 2�̂

�I��̂��
+ 	

�̂

� dE

�I� �1 −
2E���

�I� �� .

�228�

For the Hamiltonian of Eq. �141�, �I��̂��=4��̂ /�, and

	
�̂

� dE

�I� �1 −
2E���

�I� � = − 0.0192��̂ . �229�

This implies that

�ij = 1.100
�mv̄n̄

k
�̂e−�̂2/2��̂�̂i�̂ j . �230�

This result shows that the form of the transport coefficient
matrix given by Eq. �161� for the linear regime still holds in
the banana regime. The scaling of Eq. �230� agrees with
Eq. �3�.

We have compared Eq. �230� to numerical calculations
of the transport coefficients in the banana regime, obtained
by solving Eqs. �127� and �128� for gi and G1, respectively.
The numerical approach employed is to solve the generic
equation

L̂�g = s��,pz�� �231�

by expanding g in Hermite polynomials and Fourier modes,

g = �
n=0

N

�
j=−J

J

g̃jnHn� pz�

�2mTb
�eij�. �232�

Equation �231� then implies

�
j̄n̄

Ljnj̄n̄gj̄n̄ = sjn, �233�

where

sjn =	 d�dzdpz�f00e
−ij�Hne−pz�

2/2mTbs �234�

and

Ljnj̄n̄ =	 d�dzdpz�f00e
−ij�Hne−pz�

2/2mTbL̂��eij�Hn̄� . �235�

The matrix Ljnj̄n̄ is sparse, allowing relatively rapid solution
of the linear equations for N up to 2000 and J up to 20. For
small � and small �, many terms must be kept in order to
properly represent g across the narrow trapping region.

By solving Eqs. �127� and �128� using this numerical
method, and using these results in Eq. �131�, numerical val-
ues for �ij are obtained and compared in Fig. 2 to the
asymptotic results in Eq. �230�. Good agreement is obtained
when �̂ is sufficiently small.

We also have compared �11 to simulations of particle
transport in the banana regime, using the methods described
in Sec. III. These results also are in reasonably good agree-
ment with the theory, as seen in Fig. 2.

B. Example 2: Axially confined plasma

In the second example of field error transport, the plasma
is trapped in the z-direction by an external potential. The
Hamiltonian is

H =
pz

2

2m
− �0p� + �0�z� + ���p�,�,z� , �236�

where we choose an external confinement potential varying
as �0�z�=Tb�z /L�8, giving a plasma of length roughly 2L.
Also, we assume an asymmetry varying as ��
=� cos � sin kz. In the numerical solutions we assume kL
=4.21. For this potential, the axial bounce frequency �B is a
function of parallel energy E= pz

2 /2m+�0�z�, given by
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�B�E�=0.453�E /Tb�3/8kv̄. The external potential ensures that

V̄=0 in equilibrium.
As in example 1, we assume a nonconservative collision

operator given by Eq. �117�, and we further assume Vb=0 for
simplicity. The transport coefficients of interest then involve
only particle and heat fluxes, i.e., �11, �13, �31, and �33. We
calculate these coefficients numerically via Eq. �131�, after
solving for the perturbed distribution using Eqs. �127� and
�128�. We also evaluate �11 using the particle simulation
approach discussed in Sec. III.

In order to obtain numerical solutions for the transport
coefficients, we expand the perturbed distribution function in
the following basis functions:

g��,z,pz� = �
j�n

gj�nei�� j�z�Hn� pz

�2mTb
� , �237�

where  j�z� is an element from a complete set of z basis
functions. We solve for gj�n by substituting Eq. �237� into
Eq. �127�, yielding the matrix equation

�
j̄�̄n̄

Lj�nj̄�̄n̄gj̄�̄n̄ = � jHnei��,s�p�
, �238�

where

Lj�nj̄�̄n̄ = � jHnei��,L̂ j̄Hn̄ei�̄��p�
. �239�

The basis functions  j�z� are chosen as

 j = eijkz �240�

with j an integer in the range −Mz� j�Mz. A typical value
of Mz might be up to several hundred in order to achieve
good convergence for �ij. We also sum over up to several
hundred momentum basis functions. Since the total number
of terms in the sums is rather large, we focus on the linear
regime where we need keep only �= �1.

Solutions for the transport coefficients in the linear re-
gime are displayed in Fig. 3 for �0 /kv̄=0.1 and 1, as a func-
tion of � /kv̄. These rotation frequencies correspond to rigid-
ity R
�B�Tb� /�0 equal to 4.53 and 0.453, respectively
�rigidity is a parameter used to characterize some experi-
ments�. Simulation results for �11 are also displayed in Fig. 3
and show agreement with the theory predictions except at
low � /kv̄, where banana trapping is becoming important, de-
pending on the value of �. As � /Tb decreases, linear theory
works at lower values of � /kv̄, as expected from the scaling
of the banana-plateau transition, Eq. �4�. Qualitatively, these
results mirror those of example 1.

1. Plateau regime

Transport coefficients in the plateau regime can be ob-
tained analytically. In this regime we may replace the colli-
sion operator by a simple Krooks form, so that Eq. �127�
becomes

− �0
�gj

��
+ vz

�gj

�z
−

��0

�z

�gj

�pz
+ �gj = sj , �241�

where �0=Tb�z /L�8 in our example. The equation can be
solved using action angle variables �� , I� where

I = � pz
dz

2�
�242�

and � is the angle variable given, for vz
0, by

� = 	
0

z dz

vz
�B�I� , �243�

where �B=�E /�I is the axial bounce frequency.
In these variables, Eq. �241� becomes
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FIG. 3. �Color� The transport coefficients �11 �red�, �13 �blue�, and �33 �black� vs collision frequency �, scaled according to Eq. �162�, for �0 /kv̄=0.1 in �a�
and �0 /kv̄=1 in �b�, for the axially confined plasma of example 2. Thick dashed lines display the linear theory. Dotted lines give the plateau limit. Open circles
are simulation measurements of �11 based on Eq. �137�, for � /TB=0.02. Crosses are simulation results for � /Tb=0.002.
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− �0
�gj

��
+ �B

�gj

��
+ �gj = sj . �244�

Expanding gj and sj as Fourier series in � and �,

gj = �
n,�

gjn��I�ein�+i��, �245�

sj = �
n,�

sjn��I�ein�+i��, �246�

the solution of Eq. �244� is

gjn� =
sjn�

in�B�I� − i��0 + �
. �247�

The transport coefficient �ij is then

�ij =
1

Tb
	 d�dzdpzf00sigj

=
2�

Tb
�

�
	 d�dIf00�

n,n̄

gjn�sin̄−�ei�n−n̄��

=
�2��2

Tb
�
�n
	 dIf00

sjn�s
in�
*

in�B − i��0 + �
. �248�

Applying the Plemelj formula yields the plateau-regime
transport coefficient

�ij =
4�3

Tb
�
�n
	 dIsjn�s

in�
* f00��n�B�I� − ��0� . �249�

Finally the Fourier coefficients sin� are obtained using Eqs.
�125� and �246�,

�s1n�,s3n�
 = 	
0

2� d�

2�
	

0

2� d�

2�

���

��
�p�,�,z�I,���e−in�−i��

� �1,
E − Ē

Tb
� , �250�

where here Ē is the mean parallel energy, equal to 5Tb /8 for
the example potential, and z�I ,�� is the axial position written
in terms of action-angle variables via Eqs. �242� and �243�.

Plots of the plateau regime values of �11, �13, and �33 as
a function of rotation frequency �0 are shown in Fig. 4. The
plots display considerably more structure than the corre-
sponding plots for example 1. The structure arises from the
complex interplay between different bounce harmonics con-
tributing to Eq. �249�, and the results are sensitive to the
precise form of the applied potentials.

Nevertheless, the transport coefficients still display the
expected fluid, plateau, and banana regime behavior as col-
lisionality decreases, as seen in Figs. 3�a� and 3�b�. Note,
however, that plateau regime values are not necessarily
achieved before the banana regime takes over. As exempli-
fied in Fig. 3�a�, when �0 /kv̄	1, the linearized equations
require � /kv̄	1 before the plateau limiting values are at-
tained. The banana regime can take over before this happens,
depending on the value of � /T. Thus, in realistic geometries
with finite length plasmas for which �0 /kv̄	1 �the regime

of many experiments�, plateau regime transport values may
be of limited usefulness in predicting the transport. Rather, a
full solution to the transport equation may be necessary, de-
pending on the value of � /T and �0 /kv̄.

C. Example 3: Added squeeze

In the final example, transport coefficients are calculated
for an axially confined plasma to which a “squeeze” potential
Vs is applied in the center. This generates a separatrix in the
axial motion, with an x-point at z=0. The Hamiltonian is still
given by Eq. �236�, but now

�0�z� = TB�z/L�8 + Vse
−50�kz�4

. �251�

Particles with energy less than Vs are trapped on either side
of the squeeze potential and consequently experience only
part of the field error, as opposed to particles with energy
greater than Vs which move from end to end of the plasma.
The different responses to the field error of the trapped and
untrapped populations can lead to enhanced transport �here
trapped and untrapped refer to trapping in the double well of
�0, not in the field error�. This can be seen in Fig. 5 which
plots the transport coefficient �11 versus � /kv̄, obtained by
solving Eq. �238� for Vs=Tb /2, using the same numerical
method as described in example 2. When �0
kv̄, the usual
fluid, plateau and banana regimes are observed �not shown�.
However, when �0 falls well below kv̄, two new transport
regimes emerge: a 1 /� regime and a �� regime.

1. �0<�<kv̄: The 1/� regime

Since the field error potential happens to be an odd func-
tion of z, low-energy particles trapped in the z�0 well of �0

experience the opposite field error potential from those
trapped in the z
0 well. As a result, the E�B drift orbits of
particles in these two wells are displaced relative to one an-
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0.2

0.4

0.6

0 1 2 3 4

µ i
j

�0/kv

µ11

µ33

µ13

FIG. 4. �Color� Plateau limit of the transport coefficients for the model of
example 2, scaled according to Eq. �162�, and plotted vs rotation frequency.
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other �see Fig. 6�, and relative to untrapped particles. The
magnitude �r of the radial displacement is of order

�r �
�

m�c�0r
. �252�

As particles wander in energy due to collisions they be-
come detrapped and then retrapped on a time scale of order
�−1, assuming that Vs is of order Tb. Since particles only

complete a fraction of a drift orbit in this time, the magnitude
of the radial drift step that they make is of order �r�0 /�. The
radial diffusion coefficient is then

Dr � ���r�0

�
�2

�
1

�
� �

m�cr
�2

. �253�

In the 1 /� regime, the particle diffusion increases as �
decreases,2,32 up to the point where ���0.

This estimate can be improved by solving Eq. �127� for
g. A linear analysis suffices, in which case the equation be-
comes

�vz
�g̃j�

�z
�

E
− i��0g̃j� − Dvz� �

�E
vz

�g̃j�

�E
−

vz

Tb

�g̃j�

�E
� = s̃ j�,

�254�

where s̃ j� and g̃j� are the �th Fourier components of sj and gj

in �,

E =
pz

2

2m
+ �0�z� �255�

is the zeroth-order parallel energy, and vz=vz�E ,z� is the
velocity at given energy E. Since we consider a regime
where kv̄ is larger than either � or �0, it is sensible to
bounce-average Eq. �254� over z by acting on both sides with
�dz / �2�vz�, and focusing only on the bounce-averaged part
of g̃j� , ḡj�. Replacing g̃j� by ḡj� and carrying out the bounce-
average yields

− i��0�ḡj� − �Tb� �

�E
�I

�ḡj�

�E
� −

I

Tb

�ḡj�

�E
� = �s̄ j�, �256�

where s̄ j�=�−1� s̃ j�dz / �2�vz�, I= � pzdz /2� is the action, and
�= �dz / �2�vz� is the period of the bounce motion modulo
2�.

For energies E
Vs, the bounce-average of s̃ j� is over the
entire length of the plasma. Since s̃ j� is odd in z, s̄ j�=0 in this
energy range. The solution of Eq. �256� is simply ḡj�=0 for
E
Vs. For trapped particles, ḡj��0 since s̄ j��0, taking op-
posite values in the two wells.

To make further analytic progress, we consider the limit
�0	� and drop the first term in Eq. �256�. A solution for
�ḡj� /�E then follows immediately,

I
�ḡj�

�E
= CeE/Tb − 	

0

E

dE�
��E��s̄ j��E��

�Tb
e�E−E��/Tb, �257�

where the constant C is determined by the condition that ḡ be
finite as E→0. Since I�E�→0 as E→0, this requires C=0.
Then the condition that ḡj��Vs�=0 implies

ḡj� =
1

�Tb
	

E

Vs dE�

I�E��	0

E�
dE���E��s̄ j��E��e�E�−E��/Tb, E � Vs.

�258�

Applying this result to the determination of the transport
coefficients via Eq. �156� yields
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FIG. 5. �Color� The transport coefficient �11 for the model of example 3
with a squeeze potential Vs=0.5Tb, scaled according to Eq. �162�, and plot-
ted vs collision frequency, for four different values of the rotation frequency:
�0=0 �black�, �0 /kv̄=0.005 �blue�, �0 /kv̄=0.02 �red�, and �0 /kv̄=0.1
�green�. Solid lines are linearized theory from Eqs. �156� and �237�–�240�.
The dashed line is the 1 /� regime limit of Eq. �260�. The dotted lines are the
�� regime limit of Eq. �268�. The symbols display simulation results for �11

for a range of different � values, from �=0.2 to �=0.002.
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2�r

B

FIG. 6. Diagram of the effect of the field error on trapped and untrapped
E�B drift orbits. Trapped orbits are solid circles; the untrapped orbit is
dotted.
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�ij =
2n̄

Tb�−�
� dze−�0/Tb

� 2�

mTb

��
�
	

0

Vs

dEe−E/Tb��E�ḡj��E�s̄
i�
* �E� . �259�

Here we substituted ḡj for gj, made the variable change
dzdpz=dId�=dEd���E�, and performed the � integral. An
overall factor of 2 comes from the two trapping regions.
Note the 1 /� dependence of the result, as expected from the
estimate of Eq. �253�. For the potential of Eq. �251�, the
energy integrals can be evaluated numerically, yielding, for
Vs=Tb /2, and kL=4.21 �the parameters of Fig. 5�,

��11,�13,�33
 = �0.0444,− 0.0253,0.0144

n̄�2

�Tb
. �260�

These asymptotic results match the numerical solution when
�0	�	kv̄, as seen in Fig. 5 for �11.

More general results can be obtained for the case of long
plasmas of length L with flat ends, for which I�E�
�L�2mE /� and ��E��L / ��2E /m��. Then the energy inte-
grals in Eqs. �258� and �259� can be performed, and we can
replace �dze−�0/Tb �L. The result for �ij can be written as

�ij =
n̄

�Tb
	 d�

2�
� ���

��
�2

f ij�Vs/Tb� , �261�

where ��̄ is the z-average of �� over the z
0 portion of the
column, and the functions f ij are defined as

f11�x� = 2��	
0

�x

dyey2
�erf�y��2, �262�

f31�x� = f13�x� = �1

2
− x�erf��x� −� x

�
e−x, �263�

and

f33�x� =
1

2
erf��x� −� x

�
e−x. �264�

Here erf�x� is the error function.
An important feature of Eqs. �259� and �261� are their

dependencies on the squeeze potential Vs. As Vs→0, clearly
�ij also vanishes since there are no longer any trapped par-
ticles, see Fig. 7. However, as Vs /Tb→�, Eqs. �259� and
�261� imply that �11→� as well, roughly as exp�Vs /Tb�. The
reason for this divergence is that particles trapped by the
squeeze take arbitrarily large steps as �0→0 �see Eq. �252��,
unless their drift step is interrupted by collisional detrapping.
For �0→0, the field error allows trapped particles to drift all
the way to the wall. The probability of becoming detrapped
scales as exp�−Vs /Tb� for large Vs /Tb, so the size of the drift
step scales as the inverse of this factor. Of course, this esti-
mate neglects variation in �0 as a function of r, since as
particles drift to large r the rotation frequency can change so
that �0 is no longer much smaller than �. However, this
effect is beyond the local approximation, and is not included
here.

The coefficient �33 is not divergent as Vs /Tb→�, and
�31 diverges only linearly with Vs /Tb. This is because, al-
though radial drift steps are becoming large for large Vs /Tb,
the particle energies are still thermalized on a time scale set
by �, so the effective radial energy step remains finite.

Note that if �0→0, the 1 /� transport scaling leads to
very large transport for small � /kv̄, as shown in Fig. 5. This
could be observed in experiments where the field error ro-
tates with the plasma. Thus, adding a squeeze potential could
increase the coupling efficiency of rotating field errors that
are used to provide steady-state plasma confinement.33

2. �<�0<kv̄: The �� regime

As � decreases below �0, particles are able to execute
entire E�B drift orbits in the r−� plane so that the maxi-
mum drift-step size of �r is achieved, where �r is given by
Eq. �252�. The diffusion due to these steps scales as ���r�2;
it decreases linearly as � decreases. However, in this regime
a new effect supercedes this result. Trapped particles execute
a different drift orbit than untrapped particles, leading, in the
absence of collisions, to a discontinuity in the perturbed dis-
tribution function at the separatrix between trapped and un-
trapped particles. However, collisions smooth out the discon-
tinuity over a boundary layer with width of order �� /�0Tb in
energy. The dissipation of energy created by this boundary
layer leads to transport that scales as �� /�0, which domi-
nates at small �.25,26

The magnitude of this effect can still be determined us-
ing the bounce-averaged equations for the trapped particle
distribution, Eq. �253�. When � /�0 is small, the equation
may be solved using a boundary layer analysis. We replace
I�E� by its value on the separatrix, Is
 I�Vs

−�. The function
��E�=�I /�E has logarithmic divergence over an exponen-
tially narrow range of energies near the separatrix. Here we

assume that �� /�0 is small, but is still large compared to the
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FIG. 7. �Color online� �11 vs squeeze potential Vs in the 1 /� regime, for the
model of example 3.
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width of this divergence, and we replace ��E� by the average
value of ��E� averaged over the energy range �� /�0Tb near
the separatrix,

�s =
��0/�

Tb
	

Vs−��/�0Tb

Vs

��E�dE . �265�

Also, we note that the second-derivative term in Eq. �256�
dominates in the boundary layer, so we replace Eq. �256� by

− i��0�sḡj� − �TbIs
�2ḡj�

�E2 = �ss̄j�. �266�

The solution to Eq. �266� that matches the boundary condi-
tion that ḡj��Vs�=0, and which decreases as E decreases, is

ḡj� = i
s̄j��Vs�

��0
�1 − e−�1−i sgn���0��/�2�Vs−E�����0��s/�IsTb
 .

�267�

Applying this result to the calculation of �ij via Eq.
�259�, noting again that ḡi��E� is nonzero only within the
boundary layer so that we may replace ��E� by �s and s̄ j��E�
by s̄ j��Vs�, we then perform the energy integration to obtain

�ij =
2n̄

Tb�−�
� dze−�0/T� 2�

mTb
e−Vs/Tb�s�

�

s̄ j��Vs�s̄i�
* �Vs�

���0�

�
1

4
� 2�IsTb

���0��s
, �268�

valid for � /�0	1 and �0 /kv̄	1.
Also, this result requires that the width of the collisional

boundary layer at the separatrix be small compared to Vs,

� 2�IsTb

���0��s
	 Vs. �269�

For a long plasma of length L with flat ends, Is

�L�2mVs /� and �s�L /��2Vs /m, this inequality can be
written as

4�

���0�
	

Vs

Tb
. �270�

A simplified version of Eq. �268� can be obtained by
using these forms for �s and Is, and substituting L for
�−�

� dze−�0/Tb. The result for �ij in the �� regime for a long
plasma column with flat ends is

�ij �
1

��
�

�

n̄

���0�Tb
� �

���0�
e−Vs/Tbs̄j��Vs�s̄i�

* �Vs� . �271�

This is independent of plasma length L and, for Vs /Tb→0, is
nonzero �note that Eq. �270� must be satisfied, however�.
Thus, even a weak squeeze potential can have a strong effect
on the transport in the �� regime. This is because the trans-
port depends only on the particles in the thin boundary layer,
whose properties are independent of Vs if Vs	Tb and Eq.
�270� is satisfied.

Equation �268� is compared to simulations of particle
diffusion in Fig. 5 at two different rotation frequencies.

When � /�0 is sufficiently small, the theory matches the
simulation results well. Also, by comparing Figs. 5 and 3�a�,
we can see that the �0 /kv̄=0.1 data exhibits a decrease in
�11 compared to the case where no squeeze potential is ap-
plied. Only for �0 /kv̄	1 does the applied squeeze enhance
the transport above the level where no squeeze is applied.

V. DISCUSSION

In this paper we have presented a general theory of mag-
netized plasma transport driven by electrostatic field asym-
metries. A local approximation to the kinetic equation, valid
in the transport limit where the field error potential is much
smaller than the plasma temperature, allows the determina-
tion of local transport coefficients that link dissipative cross-
field particle, momentum and energy fluxes to plasma rota-
tion, parallel velocity, and temperature and velocity
gradients. In particular, temperature-gradient-driven particle
flux can be important if the gradient is sufficiently large. In
non-neutral plasma experiments such large temperature gra-
dients often develop naturally during the transport process
itself, as the plasma expands radially and converts some of
its electrostatic potential energy into heat. The self-consistent
evolution of temperature and density profiles under the ac-
tion of static field errors will be considered in later work.

For plasmas with axial symmetry at zeroth order �i.e.,
neglecting the field errors�, axial forces develop due to
plasma rotation and temperature gradients in the presence of
the field errors. Such forces could play a role in determining
the toroidal rotation observed in some experiments.34–36

Three examples of field error transport were considered,
and particle simulations were used to test the theory. In each
case, the transport simulations agreed with the theory. How-
ever, detailed comparisons of the type done here require
rather precise knowledge of the plasma potential, both of the
zeroth-order equilibrium and the asymmetry. For instance, in
the plateau regime of examples 1 and 2, the transport coef-
ficients were observed to depend sensitively on both the
plasma rotation frequency and on the presence or absence of
an axial trapping field. Also, it was observed that if, in the
zeroth order equilibrium, there exists separate trapped par-
ticle populations caused by an azimuthally symmetric
squeeze potential, and if the rotation frequency is small com-
pared to the bounce frequency, the transport is strongly
modified from the banana and plateau regime predictions.
New 1 /� and �� regimes were found similar to those pre-
dicted in neoclassical transport theory for toroidal plasmas.
Even a small population of such trapped particles completely
changed the magnitude and scaling of the transport from
theory predictions in the absence of trapping.

The challenge to experimentalists will be to characterize
the plasma potential with sufficient accuracy so as to make
contact with these theory results. A detailed comparison of
experiment with theory will be left to a future paper, but
suffice to say that current experimental results are still appar-
ently in disagreement with the theory presented here. In par-
ticular, radial particle transport for experiments with an equi-
librium squeeze, carried out in the �� regime, do not have
the same magnetic field scaling as the theory. In general, our
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theory predicts that the magnetic field enters the radial par-
ticle mobility coefficient in only two ways: through an over-
all multiplicative factor �of 1 /B2�, and through the plasma
rotation frequency. �The same may be said for the plasma

density.� In the �� regime this leads to a prediction of radial
mobility scaling as 1 /�B, but a stronger dependence on 1 /B
is observed in experiments.20

One possible explanation for this anomaly is that the
field errors used in the theory examples are missing some
essential component. Another possibility is that a magnetic
nonuniformity, neglected in the theory presented here, is re-
sponsible for the transport. A third possibility is that the col-
lective response of the plasma to the field error is important,
such as the presence of a low-frequency plasma mode that is
driven by the error. And of course, the final possibility is that
some unknown effect is causing the transport. It is hoped
that, through detailed theory and experiment comparisons,
we will eventually be able to arrive at a theory that explains
the experiments. In the meantime, such studies will certainly
continue to shed much-needed light on the richly varied be-
havior of plasmas interacting with field asymmetries.
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APPENDIX A: VARIATIONAL PRINCIPLE

The local entropy production rate, Eq. �110�, can be used
as the basis for a variational principle from which the trans-
port coefficients can be derived without having to directly
solve the kinetic equation.1,24,30 The principle is written in
terms of distribution functions g+ and g− that are even and
odd respectively under time reversal,

g+ = �g + g†�/2,

�A1�
g− = �g − g†�/2.

Then g=g++g− and we can write Ṡ as

Ṡ = − �g+, Ĉ̄g+�p�
− �g−, Ĉ̄g−�p�

− 2�g+, Ĉ̄g−�p�
, �A2�

where in the last term we have used the Hermitian property

of Ĉ̄.
Equations of motion for g+ and g− follow by adding and

subtracting Eq. �69� from its time-reversed version. Here we
assume for simplicity that we are dealing with a portion of s
which is even under time-reversal, and also assume a non-
conservative collision operator so that only �1�0 is re-
quired. Then the equations for g+ and g− are

Âg− − Ĉ̄g+ = s − �1
+, �A3�

Âg+ − Ĉ̄g− = − �1
−, �A4�

where �1
+= ��1+�1

†� /2 and �1
−= ��1−�1

†� /2, with these con-
stants determined by the constraints that

�g+,1�p�
= �g−,1�p�

= 0. �A5�

Now consider the following functional of g+ and g−,

F = − �g+, Ĉ̄g+�p�
− �g−, Ĉ̄g−�p�

− 2�g+,Âg− − Ĉ̄g+ − s�p�

− 2�1
+�g+,1�p�

+ 2�1
−�g−,1�p�

. �A6�

Variation of this functional with respect to g+ and g− yields
Eqs. �A3� and �A4�. Note that here �1

+ and �1
− enter as

Lagrange multipliers used to satisfy constraints �A5�.
Also, at the extremum, F= Ṡ. This follows because at the

extremum equations �A3�–�A5� imply that all but the first
two inner products in F vanish, and in Eq. �A2� the last inner
product vanishes since Eq. �A4� implies that

�g+, Ĉ̄g−�p�
= �g+,Âg+�p�

+ �1
−�g+,1�p�

= 0 �A7�

�recall that Â is anti-Hermitian�. Thus, extremizing F yields

Ṡ, which is directly related to the transport coefficients
through Eq. �113�.

Furthermore, by taking a second variation of F it is eas-
ily seen that F is maximized under variation of g+, and mini-
mized under variation of g−. However, in numerical work it
is more convenient to deal with a pure maximum or mini-
mum, rather than a saddle. This can be accomplished by
using Eq. �A4� in Eq. �A6�, which allows us to write F as

F = �g+, Ĉ̄g+�p�
+ �g−, Ĉ̄g−�p�

+ 2�g+,s�p�
− 2�1

+�g+,1�p�
.

�A8�

Since we must now consider g− to be determined as a func-
tional of g+ through the solution of Eq. �A4�, then F is
clearly maximized with respect to variations of g+. Further-
more, it is not difficult to solve Eq. �A4� for g−, by expand-

ing g− in the eigenfunctions Hn of Ĉ̄,

Ĉ̄Hn = − �nHn, �A9�

where �n=n� for the collision operator of Eq. �117�, and
H0=1. The solution is

g− = �
n=1

�

gn
−Hn + g0

−�p�,�,z� , �A10�

where

gn
− = − �Hn,Âg+�pz

/�n�Hn,Hn�pz
, �A11�

and g0
− is an undetermined function. Here, �g ,h�pz


�dpzf0gh, and the eigenfunctions Hn are assumed to be
orthogonal with respect to this inner product. If we also write
g+ as a sum of eigenfunctions,
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g+ = �
n=0

�

gn
+Hn, �A12�

and substitute these expressions into Eq. �A8�, we obtain

F = − �
n=1

�

�n��gn
+Hn,gn

+Hn�p�
+ �gn

−Hn,gn
−Hn�p�

�

+ 2�
n=0

�

�gn
+Hn,s�p�

− 2�1
+�g0

+,1�p�
, �A13�

with gn
− given by Eq. �A11�. Note that the last term in F can

be dropped provided that a representation of g0
+ is employed

�for example, through an expansion in basis functions� for
which �g0

+ ,1�p�
=0. Maximization of F with respect to the set

of functions gn
+�p� ,� ,z� yields the entropy production rate Ṡ,

and hence the transport coefficients via Eq. �113�, without
having to directly solve the kinetic equation.

APPENDIX B: FLUID REGIME RESULTS
FOR A CONSERVATIVE COLLISION OPERATOR

In this appendix we derive transport coefficients in the
fluid regime ��kv̄ for the Hamiltonian of example 1, using
a collision operator that conserves energy and momentum as
well as particle number. We employ a version of the Dough-
erty collision operator31 that involves only parallel momen-
tum:

Ĉf = D
�

�pz
� �f

�pz
+

pz − mV�f�
mT�f�

f� , �B1�

where the fluid velocity V and temperature T are

V�f� =	 dpzfpz�	 dpzmf , �B2�

and

T�f� =	 dpzf�pz − mV�2�	 dpzmf . �B3�

Then the operator Ĉ̄ corresponding to Ĉ �see Eq. �48�� is

Ĉ̄g = D� �2g

�pz
2 −

pz�

T0

�g

�pz
� + ���Vpz�

T0
+

�T

T0
� pz�

2

mT0
− 1�� ,

�B4�

where we have linearized in ��, and where

�V =
�f00gpz�dpz

m�f00dpz
�B5�

and

�T =
�f00g�pz�

2/m − T0�dpz

�f00dpz
�B6�

are the velocity and temperature perturbation associated with

g, pz�= pz−mV̄, and V̄=V�f00� is the equilibrium velocity. The

eigenfunctions of Ĉ̄ are still the Hermite polynomials
Hn�pz� /�2mT0�, and for n�3 the eigenvalues are unchanged,

Ĉ̄Hn = − n�Hn, n � 3. �B7�

However, for n=0, 1, and 2, the eigenvalues are now zero, as
expected for conservative collisions. Equations �166� and
�167� are then replaced by

2�2kv̄g̃2 − ��0�g̃1 +
kv̄
�2

g̃0 =
��

2 �0,
mv̄
�2

,0� ,

�B8�

3�2kv̄g̃3 − ��0�g̃2 +
kv̄
�2

g̃1 =
��

2
�0,0,1/4
 .

All other equations for g̃n remain the same �with the substi-

tution �0�→�0�
�0−kzV̄ /��.
Since the first three equations in the sequence, Eqs.

�165� and �B8�, no longer depend on collision frequency, the
next equation involving g̃4 must also be kept in order to
obtain nontrivial results for the transport coefficients. To
lowest order in 1 /�, one can set g̃4=0 and solve the four
equations for �g̃0 , g̃1 , g̃2 , g̃3�. This results in a matrix of trans-
port coefficients with the same form as Eq. �161� �except that
�0�→�0��, but now

�11 =
�2�2n̄

T0

k6v̄6�

�2�2�0�
2�3k2v̄2 − �2�0�

2�2 + F���0�

kv̄
�k8v̄8

,

�B9�

�13 =
�2�2n̄

2T0

k4v̄4���2�0�
2 − k2v̄2�

�2�2�0�
2�3k2v̄2 − �2�0�

2�2 + F���0�

kv̄
�k8v̄8

,

�B10�

and

�33 =
�2�2n̄

4T0

k2v̄2���2�0�
2 − k2v̄2�2

�2�2�0�
2�3k2v̄2 − �2�0�

2�2 + F���0�

kv̄
�k8v̄8

,

�B11�

where the function F�x� is needed only near x=0 and x
= ��3, since only for these values of the argument is the
term involving F important. For these values, it may be
shown that

F�0� = 1 and F���3� = 4. �B12�
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