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Point vortex dynamics within a background vorticity patch
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Recent experiments and simulations have observed that the interaction of strong vortices with a low
vorticity background can strongly affect the dynamics of both vortices and background. This paper
considers an idealized model of this interaction. The background is treated as a patch of uniform
vorticity with a nearly circular shape. The strong vortices are treated as point vortices, and their total
circulation\ is assumed to be small compared to that of the background. It is found that Kelvin
waves on the boundary of the background patch can be driven to large amplitude by the strong
vortices, eventually resulting in wave breaking and filamentation. A multiscale analysis finds that
the wave-breaking time scales as*In\"%, in agreement with contour dynamics simulations.

© 2001 American Institute of Physic§DOI: 10.1063/1.1343484

I. INTRODUCTION down the local background vorticity gradiefitglobal mix-

. . .. .. ing of th kgroun n he vorti le in
Two-dimensional2D) Euler flows are the inviscid limit 90 t. e background ca c::luse the vo tcez,sut?ssette to
equilibrium patterns, termed “vortex crystals-®1%

of 2D incompressible Navier—Stokes flows. They are often In this paper, we study the interaction between the strong

used. as simple models for large scale geophyslcal and aStr\c/)(_)rtices and the background flow with a simple model. The
physical flows, such as the polar vortex, tropical cyclones

ocean eddies, and the Great Red Spot of JupifeFhey are EOde;;%rzS'EFihOfrZe;/:;:Lfso'S]tev?gtlcezzz dt ar;):élie?ggg dvor-
also applicable to many experimental systéniscluding X P whi P W vorticity 9

strongly magnetized plasmashin layers of electrolytéand The point vortices are inside the vortex patch, and the flow is
flows in soap filme ' ' subject to a free-space boundary conditipe., there are no

The equation of motion for a 2D Euler flow is surrounding boundarigsLanskyet al. have studied a similar
model in which one point vortex is placed outside of the
do+tu-Vo=0, (1) nearly circular vortex patch. They showed that the point vor-
whereu(r,t) is the velocity field, and tex can merge into the vortex patch through successive
resonance¥ Here we concentrate on the case where the

w(r,t)=2-VXu 2 point vortices are already inside the patch, and the patch is
is the vorticity field. Here is the unit vector perpendicular nearly circular initially.
to the plane of the flow, and=(x,y) is the position vector The dynamics of a collection of point vortices and the
in the plane. The flow is incompressible: dynamics of a vortex patch have separately received consid-
V.u=0: 3 erable attention. For a collection of point vortices, the equi-

librium patterns have been exhaustively studied, and stability
therefore, a stream functiap(r,t) can be related to the ve- properties have also been determifétf The dynamics of

locity field the system is Hamiltonian and is chaotic in most caSes.
u=VXxyz 4) The equilibrium and dynamics of an isolated vortex
patch have also been thoroughly examined. For example, it is
Substituting Eq(4) into Eq. (2), we obtain Poisson’s equa- known that a vortex patch has infinitely many rotating equi-
tion libria, among which the circular shageo called Rankine
V2y=—w. (5) patch is the most fundament&!. The circular patch supports

) . ) _ steadily propagating infinitesimal perturbations, or Kelvin
Two-dimensional Euler flows often contain strong vorti- yayes, on its boundary. Contour dynamics has been used
ces(localized patches of intense vorticitnoving through @ extensively to study the evolution of small disturbances
low diffuse vorticity background. For example, such struc-aqded to equilibrium vortex patch&sFilamentation, or the
tures are observed to form spontaneously in experiments anfgymation of filaments of vorticity drawn off the vortex

numerical loslignulat_ions of freely relaxing 2D paich, often results from the growth of linearly unstable
turbulencé®°~12The interaction between the strong vortices Kelvin waves?2 Numerical and analytical evidence is also

and the background vorticity plays an important role in theyresent for long time filamentation of arbitrarily small, lin-
evolution of these flows. Local mixing of the background byearly stable disturbancéd.

the strong vortices can cause the vortices to move up or paper combines the problems of point vortex dy-

namics and patch dynamics. We concentrate on the limit in
dElectronic mail: dhdubin@ucsd.edu which the contour of the vortex patch is nearly circular, and
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the total circulation of the point vortices is much smallerIl. THE MODEL

than that of the vortex'patch. This orderi'ng int'roduces @ The model we consider consists M point vortices in-
small pargmetex, the ratio of the average circulation of thg side a vortex patch. The flow is subject to a free-space
point vortices to that of the patch. We evaluate the dynam'cﬁoundary conditiony(r)—0 asr—. The positions of the
analytically using a two-time scale analysis and a novelyoint yortices areR,,(t), and their circulations arg,,, with
pseudoenvelope equation based on the high spatial Fourigs— 1,...M. The vortex patch has a constdpbsitive) vor-
harmonics of the patch contour. We then compare the resultgity «,, and its shape is specified by a smooth single val-
of the analysis to contour dynamfésimulations. Our ana- yed functionr(6,t), which is the radial position of the
lytic approach yields several new results, verified by thehoundary point at polar angleat timet. A generic point in
simulations. First, we show that the interaction of the stronghe plane is denoted as=(r,6), wherer is the radial posi-
vortices with free-streaming Kelvin waves on the vortextion of the point, andd is the polar angle.

patch eventually causes wave breaking and filamentation of The perturbation limit of the model, which is the main
the patch. We find that when a vortex is within a small dis-subject of this work, is defined by two conditions. One con-
tance of the edge of the patch, of order times the patch dition is that the average magnitude of the circulation of the
radius, filamentation occurs rapidly, within one rotation pe-point vorticesI",= (1/M)2 Ty |, is much smaller than the
riod of the patch. The exponertis found from contour circulation of the vortex patch; = jdr’w,, where the region

dynamics simulations to be approximately 0.566. For vorti-Of integration is inside the vortex patch. This defines a small
ces far from the edge of the patch, the time required foParameter

waves to break is much longer, scaling as the patch rotation T,

period times\ ~*In A~ L. (This scaling has recently been veri- AN=T (6)

fied in a set of 2D fluid experiments using a nonneutral _

plasma as the working fluif® which we refer as the point vortex strength. The other con-

We also show that, before wave breaking occurs th&lition is that the radius of the vortex patch deviates from a
dynamics of the point vortices is identical to the dynamics ofcircular patch of radius, by a small amouné(6,t); further-
point vortices within a fixed cylinder of the same radius asmor(;, ,th'Sf de(\j/|at|o_n compared to the radius of the circular
the patch and with a free-slip boundary condition, except forpatc Is of orden, I.e.,
an overall rotation caused by the patch and a fast jitter mo-
tion caused by Kelvin waves on the patch. Therefore, all
results of point vortex dynamics in a circular boundary can )
be readily applied to the dynamics of the point vortices. ForThe unperturbed patch has radiys related tol” andwo by
example, we know right away the equilibrium patterns of the
point vortices; we know that the Havelock instabifityap-

plies to these equilibrium patterns—the point vortices canno%he unperturbed patch, and the unit of timetjs: 4m/wq,

be too_ close to the contour of the vortex patch, Oth.er\{v's?/vhich is the rotation period of the unperturbed patch. Con-
they will be attracted toward the contour, and the equilibrium

s _ ) equently, the unit of velocity is,/to=rpwy/4, and that of
patterr_1 will b(_e uns_ta_ble, we also knoyv that the dynamics 0(S/orticity is 1kg= wel/4m. Also, the unit of the circulation is
the point vortices is in general chaotic.

_ _ wori/4m, and that of the stream functiafis wor 2/47.

~In Sec. Il, we define the model and the perturbation ™ |, these units, the unperturbed patch has radius 1, vor-
limit, and we discuss the units used in the paper. In SeGjcjty 4+, circulation 472, and rotation frequency2 In the
IIIA, we derive the general nonlinear equations of motion et of the paper, these units will be used for the physical

for the model and in Sec. Ill B we Taylor expand these equagyantities and all of the equations will be dimensionless.
tions in powers oh. In Sec. lll C, we transform the equation

for the patch dynamics into Fourier space. In Sec. IV A, we
consider the linearized version of our equations, both as z!';{" EQUATIONS OF MOTION

check on our analysis and in order to determine linear equa?. General equations

tions for the evolution of the Kelvin waves. In Secs. IV B- Throughout the rest of this paper, we will work in a

IVD, we perform a two-timescale analysis of the nonlineargame that rotates with the unperturbed patch rotation fre-
equations. In Sec. IVD we then introduce a novel “pseu-quency 2r. In this rotating frame the evolution equation for
doenvelope™ formulation of the patch dynamics in order tothe contour of the vortex patch, defined by functiQ(é,t),
determine the filamentation timescale. In Sec. IVE, filamentan be derived by considering the motion of a contour point
tation is examined in detail for two cases: a single pointgt re=(r.,6). After an infinitesimal time intervatlt, the
vortex in the patch, and two equal-strength point vortices inpoint moves to a new position.=(r.,0"), where 6’ =6

the patch. Throughout Sec. IV, we compare our results tory , dt/r,, andr/(6',t+dt)=r.(6,t) +v, dt. Herev, and
contour dynamics simulations. Finally in Sec. V, we discuss, , are the radial and azimuthal components of the velocity of
several outstanding questions. A constant of the motion fothe boundary point, as seen in the rotating frame. Taylor
the slow-time nonlinear dynamics of the Kelvin waves isexpanding the above equation to the first orderdinwe
derived in the Appendix. obtain

€
n ~A\. (7)

= 7T(1)or§.
In the perturbation limikn<1, there are natural units for
he physical quantities. The unit of length is the radiy®f
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The boundary condition for this nonlinear partial differential

equation isr(0+2m,t)=r.(6,t).

The equations of motion for the point vortices are simply

given by

dRy
dt

9)

m:»

whereV,, is the velocity of themth point vortex.

To complete the equations of motion, the velocities of

Point vortex dynamics within a background 679
.o Lay,
Vi) =fev, =2 —2
r, R, sin(6—0,)
=-> pys -y — (17)
n 7)r“+R;—2rR,cog 6—0O,)
and
. Y
Vil(r)=0-v,=——=
r r-R,cog6—-0
=E(J-22 Sk L T
n \27/r +R;—2rR,coq6—0O,)

the point vortices and the contour points must be calculated.

This is done by calculating the stream functignrecogniz-
ing that the vorticity distribution of the flow is

o(N=wy(r)+ >, ['h(r—R,,)—4, (10)

where the factor of # is the vorticity associated with the

rotating frame, and

4ar,
01

r inside the vortex patch

(11)

r= .
(") r outside the vortex patch

is the vorticity distribution of the vortex patch. Using the
free-space Green’s function

1
G(r—r')=—=—=Inr—r’'|, (12
27
the solution of Eq(5) for the stream function is given by

t//:fdr’zw(f’)G(r—r’)=z/fb+¢fv+wr2, 13

where in the second expression we have neglected an unim-

portant additive constant, and whepg and, are contribu-

tions from the vortex patch and the point vortices, respec

tively,
’ﬂb:f dr'2ep(r')G(r—r'), (14)
,= > ThG(R,—T). (15)

The velocity at pointr is then determined by Eq$5) and
(13

v=VX 2=V, +V,— 27 8, (16)
where v,=V i, X2 is the velocity induced by the vortex
patch, andv,=V, X 2 is the velocity induced by the point
vortices.

As our purpose is to evaluate E@®), it is necessary to

where Eqs(15) and(12) were used to determing,(r), and
the positionR,, of the nth vortex has been written in polar
coordinates R,,,0,).

It is also necessary to determine the radial and azimuthal
components of the velocity field induced by the patgh
This field can be written as a line integral along the contour
of the patch using a standard vector iderifity

vb=V¢bx2=f dr' 2wy (r")V,G(r—r')x2

=47 j; dl’'G(r—r(), (19
wheredl|’ is an infinitesimal vector in the anticlockwise di-
rection along the contour of the vortex patch, and
=(rc(6',1),0") is the point on the contour at angk.

Denoting ther — 6 components of/, asu, anduy,, re-
spectively, one finds after some algefirthat Eqs.(19) and
(12) yield

2 !
ur(r)=f-vb=—zf de’ cos{e’—a)—c,—sir‘(e’—a)r(’:
0 a6
xIn|rl—r|, (20)
and
N 2 . (':
u(,(r)=0-vb=—2f do’ Sln(a/—ﬁ)w
0
+cos(0’—0)rg)ln|ré—r|. (21)

With the aid of Eqs(16), (17), (18), (20), and(21) we
find that the radial and azimuthal components of the velocity
at the contour point. are

U =Vi(re) +up(re), ve=Vy(re)+uy(re)—2mre, (22
and those at thenth point vortex are

Vm,r:Vr’(Rm)'*’ur(Rm)a

' (23
Vm,azvﬁ(Rm) + Ug( Rm) —27R,,,

explicitly work out the radial and azimuthal components of
the velocity field. For the field produced by the point vorti- whereV/, (R,,) andV (R, are given by Eqs(17) and(18),
ces, these components are respectively, with the contribution from the self-field of the

Downloaded 14 Mar 2001 to 132.239.69.90. Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html



680 Phys. Fluids, Vol. 13, No. 3, March 2001

D. Z. Jin and D. H. E. Dubin
mth point vortex excluded. These expressions for the velociy, (6,t)=\VY +\eV(?
ties, together with Eq$8) and(9), complete the equations of , p
motion of our model. +f da’( cot(
0
Since our model equations have no general analytic so- o i )
lution, simplifications are necessary in order to proceed. In Similarly, the azimuthal velocity components of the

this section, we Taylor expand the equations of motion in th&{ch contour due to the point vortices and the patch itself

small parametek, the average circulation of the point vor- &€ found to be
tices compared to the circulation of the vortex patch. As we

e_/2

€ —ee'+—
2

!

2

0) +0O(\%).

B. Perturbation equations 29

—\v 2
will see later, in order to obtain the leading order solutions Vilre) =AVi "+ O\, (30)
that are valid for a time scale of ordemlive need to derive \yhere
the equation of the contour of the vortex patch correct to
O(M\?), and those of the positions of the point vortices to 1 r
) _ m
O(A). viden=> |5
The contour of the vortex patch is given by
1-Rp(t)cog 6—0O(1))
re(0,H)=1+¢€(6.t), 24 X '
o(6:1) (6.1 (24) 1+R (02— 2R (cog 0-0.(0)" =D
wheree is assumed to be a smooth, single valued function of
order\. Sincee is a smooth functiongr./d6 is of orderx; ~ and
therefore, in Eq(8) we need to obtaim , to O(\) andv, to U(r)=2m+0\2). (32)

O(N\?). This is accomplished by Taylor expanding the func-
tions V,(r¢),u (re) andVy(re),ug(re).

Taylor expansion o¥/,(r.) is straightforward, and using
Eq. (17) the result is

Vi(ro) =AVI(0,1) + N e(0,0) VP (0,1) +O(\3), (25
where
ViP(6,t)

- E(Fm) Ri(t)sin(6— 0 (1))

S\ 2N 1+ R, (1)°— 2R (t)cog — O (1))’

(26)

and
Vi2(6,t)

-3

m

=)

N\

Rin()sIN(6— O (1)) (1—Rm(t)cog - O (1))
(1+Ry(1)2—2Rpn(t)cog 6= O (1)))*

(27)

The functionvﬁl) is the radial velocity induced by the point

vortices evaluated along the contour of the unperturbed cir-

cular patch, and/(? is the correction due to the deformation
of the contour from a circle.
Taylor expansion ofu,(r;) needs a little more care,
since it involves an integration of function |ir{ —r|, which
is singular wherr_—r.. Nevertheless, one can prove tRat
+O(\3),

u,(re)= Jozwd0’< cot( o
(28)

wheree’' =¢(6,t). Combining Eqs(25) and(28) in Eqg. (22)
we arrive at the total radial velocity of the contour point

6/2
€ —e€e' +—

2

!

2

In Eq. (32) above there is n®(\) term. This is related to
the fact that the area of the vortex patch is a constant under
incompressible flow, equal te in our units:

2m 1+€
W:f de’j drr, (33
0 0
which yields
27 1 (2w
do'e'=—= | d@'e?~0(\?). (34
0 2 Jo

Combining Eqgs(24), (30), and(32), Eg. (22) yields the fol-

lowing expression for the totad velocity of the patch con-

tour:
vy(0,1)=—2me+AVV+0O(\?). (35)

Substituting Eqs(24), (29), and (35) in the evolution
equation for the patch contour, E®), we arrive at

0 (—2met Vi) LS
gt T(T2met Vi oy
VARV
2 6/2 01_ 0
+f dé’'| € —ee’+ —|co , (36)
0 2 2

which is correct toO(\?).

Turning now to the dynamical equations for the point
vortices, according to Eq23) we need to Taylor expand
Ve andVy, 4 to O(N). Using Egs.(20), (21), and(24) in
Eq. (23 yields

Vin =V{(R) + UM (R €) + O(N?), (37)

and
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Vino=Vy(Rm) + U%l)(Rm :€)+O(N), (38)  Then a straightforward but lengthy calculation of the Fourier
coefficients of each term in E¢36) leads to the following
where equation for the mode amplitudes of the patch contbur:
2m 2¢e(0',t)sin(6’'— 6,
(1) R. :f 4 m dEk . . . Sk
U (Rmie) 0 dé 1+R5—2R,cog 6’ —O ) 39 rTE 27-rskek+|skvk+27-r|2q €q€k—q| A~ SqT 5
and r
. m .
2¢(6' t)(Ry—cog 6’ —6,)) —ike E"; € q(K+5g) V. (49)

2m
(1) Coy— '
u; (Ry;e)= de
o (Rmie) fo 1+R%— 2R, cog 60— O,,) , _ , _
The first term on the right hand side of the above equation
(40) : o
o represents the restoring force for the oscillation of kitie
are ther and ¢ components of the velocity field due to the i q4e the second term represents driving by the point vorti-
patch perturbatior. As an "li)'d to thg)analyss of Sec. IV the eq the third term represents mode—mode coupling, and the
functional dependence of V) anduj” on (¢’ t) has been  fourth and the last terms represent nonlinear interactions be-
explicitly noted in the second argument of these functionsyyeen modes and the point vortices.

Therefpre, cqrrect t@(\), the perturbation equations for Equation (48) provides the nonlinear evolution of the

the point vortices are Kelvin wave amplitudes,, correct toO(\?). Note thatV,,
dR, o defined in Eq.(46), depends on the positions of the point
W:Vr(RmHUr (Rm;e), (41)  vortices, which must be determined via E¢¢1) and (42).

The nonlinear terms on the right hand side are of obder
do,, , ) _ except wheney, the amplitude of the zeroth mode, is in-
Riigr -~ Ve(Rm) TUg (Ri€). (42 yolved, in which case the nonlinear terms are of orkir

) ) since e~ 0O(\?) [Eq. (45)]. Therefore nonlinear terms in-
Equations(36), (41), and(42) provide a closed set of pertur- volving €, can be discarded.

bation equations describing the evolution of the boundary of
the vortex patch, and the motions of the point vortices inside

the patch, as seen in the rotating frame of the unperturbed
patch. IV. SOLUTIONS

A. Kelvin waves

C. Mode equations ) )
If we setl',,=0 for all of the point vortices, Eq(48)

The evolution equation for the perturbed patch contour pecomes the linear mode equation for small disturbances on
. small disturbances, the equation for tkth mode is
e 9,t)=§k) en(t)el*?, (43)
. i ﬂziz#skfk, (49)
whereg(t) is the amplitude of th&th mode. Because of the dt

periodic boundary conditioa( 8+ 2,t) = €(6,t),k must be
an integer. Moreover, sinceis real, we have

€F =€ . (44)

and the solution is
ex(t) = €,(0)€?™S, (50)

wheree,(0) is the initial amplitude of the mode. Therefore,

We also know that ) .
a small disturbance on the circular patch evolves as

€o~0O(\?). (45)
This is obtained by substituting the Fourier expansion, Eq. 6(6’,t):2k ex(0)e! k0 2msid), (51)
(43), into Eq.(34), and is a consequence of the fact that the
area of the vortex patch is a conserved quantity. which is a sum of Kelvin waves. The phase velocity of the

With Eq. (43), we can obtain the Fourier coefficients of kth Kelvin wave is

Eq. (36). It is useful to define the following quantities: p
a

r . Uphasé~ ~ T (52
Vi S 22 Rieon, (46) K
" . In the rotating frame, all Kelvin waves rotate in the clock-
a sum related to the driven response of the contour of th@ise direction. Also notice that all Kelvin waves oscillate
vortex patch due to the point vortices, and a sign functionyith periods equal to unitygnormalized to the rotation time

Sk - of the vortex patch This means that any arbitrary small
1, k>0 disturbance composed of Kelvin waves returns to its initial
shape every unit time period, although in between the peri-
s=) 0. k=0 . (47)  ods the shape changes due to the different phase velocities of
-1, k<O the Kelvin waves.
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B. Two time scale analysis This contour evolves according to E@8). Substitution
of the two time scale series, Eq8.3)—(55), gives theO(\)

Even in the perturbation limik <1, our model equations .
equation

are still too complex to solve analytically. Fortunately, fur-
ther progress is possible by noting that there are two time 1)
scales in the dynamics. As shown in E¢41) and (42), the Jek
velocity of themth point vortex in the rotating frame is in-
duced by other point vortices and the small disturbance ) .
(6,t) on the contour of the vortex patch, which are all @d theO(1%) equation
guantities of ordek. Thus, it takes a slow time scale of order 2
1/\ to move the point vortices over distances of order unity ‘9&
relative to the vortex patch. On the other hand, EzD) ot
shows that the modes on the contour of the vortex patch
oscillate with a fast time scale of order unity. Therefore wewhere
can solve the perturbed equations with two time scale analy-
sis.

We first introduce the “slow time,” defined as=A\t,
and accordingly calt the “fast time.” We then expand the

=2misel +is VY, (60)

—ZWiSkE&Z):hk, (61)

(1) Sk

&ék
h(t,7)=— — —+is, V|2 + 2 % eg”e(kl)q( A=Sqt >

. . . . L r
dynamical variables in two time scale series: _ikef(l) > 477m)\_i§q: e(kl,)q(kJqu)qul) (62)
a(t)=Nel(t, )+ N2 (t, 1)+, (53
is a nonlinear forcing term, and
Rn()=R&(t,r) +\RP(t,7) + -+, (54)
r K e
(1) — M 0" —iko
On()=00(t, )+ NOW(t, 1)+, (55) Vi —% 2y Rm e m, (63)
whereel™, €2, RO, RY, 0 ando(V are functions "
of order of unity. Heree{"=0, sincee, is of order\? [see VI I'm RO - ik kIR koW (64)
Eq. (45)]. KT N R0 m

Substituting these two time scale series into the pertur-
bation equations and collecting terms in the same ordar of constitute the two time series for the quantity [see Eq.
we obtain a series of equations corresponding to the contri46)]:
butions from the terms of successively increasing ordex. in
The slow time dependence of a quantity is determined in the Vi =AV +\2V2+--- (65)
next order equations by requiring that the sum of the reso-
nant terms that drive unbounded fast time growth of the nex&
order quantities should vanigthe resonance conditipn

For the point vortices, substitution of the two time scale  In the leading order, the point vortices move according
series into Eqs(41) and (42) yields theO(\°) equations to Eqg. (56). The solution is simply

. Leading order solutions on the fast time scale

(0) (0)
R _o r0Om _, 56 R =RR(n), OR'=01(7), (66)
ot Mgt '

so to leading order the point vortices are stationary in the
and theO(\) equations rotating frame on the fast time scale.
The amplitudes of the modes of the vortex patch evolve

(0) (1) . . . .
(f?Rm N IR )=V’(R(°))+u(1)(R(°)')\e(l)) 57 leading order according to E¢60). SinceV{" only de-
T at reem raeme ' pends on the leading order positions of the point vortices,
which have no fast time dependence, the solution of the
and equation is
(0) (0) (1)
AR ZOm g Om | 7O . o Vi
moot mlor ot e/ =by(r)e?mH = ——, (67)
=V (R)+uP(RP ;N el). (58)

whereb,(7) is the constant of integration that depends on
Here, V) and V, are evaluated with all vortices at their slow time. Therefore,
leading-order position®R(?). Equations(57) and (58) in-

volve the lowest-order deformation of the patch contour Dot )= B(0,7)+ E by( 7)e2sK 69)
k#0

NeD(g,t, =)D el (t,r)ek’. (59)
k=0 where
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V(kl) _ Equations(71) and(73) show that the leading order po-
B(o,7)=— Ze”‘” sitions of the point vortices evolve in the rotating frame on
k#0 the slow time scale with a velocity induced by other point
(0)?_ (0) _ 00 vortices as well as the image charge pgstof the contour
| R R, —Rn’ cog6—0.") - :
=> . o2 5 5o (69 deformation of the vortex patch. Therefore, the leading order
m 47N 14+ RY" - 2R cog -0 dynamics of the point vortices is the same as that of point

vortices under a circular free-slip boundary with radius equal

where in the second line we have summed the Fourier serieﬁj that of the vortex patch. Also, Eq@2) and(74) show that
using Eq.(63). Nc_mcg th_amg(a, 7) has the same form as the the free-streaming Kelvin waves excite oscillations of the
image charge distribution induced by the point vortices at

; . : oint vortices on the fast time scale.
Ry on a C|rcular_ free-slip t_)oundary of radius 1. F_rom Eq'p To test this conclusion, we have compared the leading
(68) we see that in the leading order, the deformation of the . . ’ .
vortex patch consists of two parts: one par ). the order solutions with the results of a contour dynamics
- 1 T!

“image charge” deformation, which is determined by the simulatiort* for the case oM =2 andl’; =T';=0.08x 4
imag 9 ion, which | : Y€ _ 5242 (i.e., \=0.05, initially placed atR,=(0.2,0) and

:‘?:g-lgt?e(;rr?r: D(LS(IatIIO.ES O;tgi pqlrr:t ;g{t'ﬁf Sd ég(e )O th?‘r_cphart 'SR2= (0.4). The evolution of the radial position of the first
N9 vin waves wi phitu 7) Whi point vortex is plotted in Fig. 1. As shown in the figure, the

are not affectedin fast ime by the point vortices. leading order solution agrees well with the result of contour
dynamics.

The difference between the leading order solution and
The slow time evolution of the leading order approxima-the result of the contour dynamics is of orde+0.05, and
tions to the positions of the point vortic%,?) and the con- has two features that can be understood from the solutions of
tour of the vortex patcle()(9,t,7) must be determined with the R(Y) and©(}, Eqs.(72) and (74). First, there is a fast
the resonant conditions in the next order equations, Egsime scale oscillation with period &the rapid wiggles in the

D. Leading order solutions on the slow time scale

(57), (58), and(61). solid line of Fig. 1 that is missing from the leading-order
Substituting the leading order solutiopSqgs. (66) and  solution (the dashed line This oscillation comes from the
(68)] into Eq. (57), we obtain effect of free-streaming Kelvin waves on the vortices; see

R 0) Egs.(72) and(74). Second, there is a deviation that evolves
N IRm Y +V’(R(°))+u(l)(R(°) \B) on the slow time scale: the slow oscillation frequency in the
at dr e roeme contour dynamics solution is evidently not quite the same as

the leading-order solution. This discrepancy comes from
e2misit. slow-time evolution in the constants of integratigp( ) and
dn(7) in Egs. (72 and (74). The slow time evolution of
(70  these small quantities cannot be determined at our order of
approximation; they are determined by higher order equa-
Quantities in the curly bracket in E¢70) depend only  tjons.
on the slow time. They must sum to zero; otherwise the  The equivalence at lowest nontrivial order of the dynam-
solution forR{}) will have a term that is linear i and will  jcs of the point vortices to the classical problem of point
grow unbounded on the fast time scale. Therefore, we havgortices inside a circular free-slip boundary enables us to
de(T?) apply all of the results of the classical problem to our model.
A =V!/(R)+u DR :\p) (7  For example, we know the equilibrium patterns of the point
dr vortices and their stability from the works of Havelotk,
Campbell and Zifft® and others. We also know that the dy-
namics of the point vortices is Hamiltonian and is chaotic in
generaft®
We now turn to the slow time evolution of the vortex
patch. The slow time evolution of the image charge part of
wherec,(7) is a constant of integration. the contour deformationng is simply determined by the
Similarly for the # motion of the point vortices, substi- |eading order positions of the point vortices, as given by Eq.
tuting the leading order solutiorf€qs. (66) and (68)] into  (69). The slow time evolution of the Kelvin waves, on the

. K1 o0
A 27-r|skbk(r)R(n?)‘ e Om
k#0

and

RY= 3 b(nRY" ek e ey (n), (72
k#0

Eq. (58) implies other hand, is obtained by the resonant condition of the sec-
46 ond order terme{®) in Eq. (61). Since the right hand side of
ARO—™ v (RO + DR )\ g) (73 the equatiorh, does not depend od?), we have
dr '
and @) _ a2miset [ e / —2isyt! 2misyt
€ =e [ dt'h(t',7)e K- (r)e”™sKt (75)
0
oy=3 sy RO kO 2Ty g (1), (74)
wheref,(7) is the constant of integration. Furthermore, since

whered,(7) is a constant of integration. the fast time behavior di, is determined by(®), RETP, and
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0.40

FIG. 1. Time evolution of the radial
positions of the first of two point vor-
tices, initially placed atR,=(0.4,m)
and R,=(0.2,0). The unit of time is
the rotation period of the unperturbed
circular patch, and that of the length is
the radius of the unperturbed circular
patch. The circulations of the point
vortices arel’;=I,=0.27% (i.e., \
=0.05. The dashed line is the result
of the leading order two time scale so-
lutions, Egs.(71) and (73). The solid
line is the result of contour dynamics.
The shape of the vortex patch is ini-
tially circular. At t=40.22, the con-
tour of the vortex patch filaments.
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O, which are all periodic functions of the fast timevith ~ tion does not contribute, since the sum of the oscillation
period 1, we can express in terms of the Fourier transfor- frequencies of two Kelvin waves does not equal the oscilla-

mation tion frequency of any other Kelvin wave.
A conserved quantity can be derived from the mode
_ e 2mint equations. From Eq@80) we see thaM/’k"q=Wq'k. There-
he=2, hyn.7)e ' (76 fore, it is easy to verify with Eq(79) that
where thenth Fourier coefficient is defined as by|? by db, b, db§
(% ||kk|| ) - (ﬁ & VK d ) o @

~ 1 )
h (n,7)=f dthy(t, r)e 27N, (77)
“ o X Hence, the sunk,|b,|%/|k| is a conserved quantity. We can
. . . 2 .
Substituting this transformation into E(75), we find thatin  Prove that this sum multiplied by#°\2 is the self-energy of

order to avoid secular growth ef? in fast time we require the Kelvin waves in the rotating frameee the Appendx
The conservation of this quantity is not surprising. In the

ﬁk(sk,r) =0, (78) rotating frame, the fast-time averaged energy of the system,
which is conserved on the slow time scale, is the sum of the
interaction energy between the point vortices, the interaction
energy between the point vortices and the image charge part,
the self-energy of the image charge part, and the self-energy
of the Kelvin waves. On the slow time scale the dynamics of
the point vortices in the rotating frame under the influence of
the image charge part is the same as if they are subject to a

or in other words, the resonant driving term in E@1) must
vanish.

Substituting Eqs(62)—(64) into Eq.(77), and using Egs.
(67), (72), and(74), we find that the above resonant condi-
tion leads to the following slow time evolution equations for
the amplitudes of the Kelvin waves:

dby circular free-slip boundary, so the fast-time averaged energy

dr _'kqu;fo Wi,qbg » (79 of the subsystem consisting of the point vortices and the

image charge part is conserved. Therefore, the fast-time av-

where the nonlinear coupling matri¥y q is defined as eraged self-energy of the Kelvin waves is also separately
conserved.

[K[+]q[—2 [k—q (0) . . . .
— (R ! -RY Tei@-kom’  (g) Equation(79) describes the slow time evolution of the

Wk,q E

amplitudes of the Kelvin waves. With the image charge part
The details of the derivation are complex and may be foundg of the contour deformation slaved by the position of the
in Ref. 26. Notice that in Eq(79), only modes with wave point vortices, the leading order solution for the contour de-
numbers of the same sign are coupled. The for/pf, can  formation, Eq.(68), is completely determined. To verify that
be understood by examining the nonlinear term&jirfsee this solution is indeed correct, we again compare with con-
Eq.(62)]. There are three interactions in the nonlinear termstour dynamics. In particular, we study the evolution of the
interaction between the Kelvin waves and the oscillations otontour for the case dfl=1, I';=0.05x 47?=0.27 (i.e.,
the point vortices, the interaction between the Kelvin waves\ =0.05. Initially, the point vortex is placed atR
and the image charge part, and the interaction of the Kelvirn=(0.5,0), and the initial shape of the contour is circular. The
waves with other Kelvin waves. The first interaction contrib-leading order motion of the point vortex is quite simple,
utes to the first term in Eq80), and the second interaction since the point vortex is moving in the rotating frame only
contributes to the second term in E§0). The third interac- under the influence of its own image charge. The radial po-

27N
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sition R of the point vortex does not change, but its angularE. Filamentation

position increases in slow time &= 7, where o » ) )
For some initial positions of the point vortices, the con-

tour of the vortex patch evolves into a shape that violates the
Q= —. (82 assumptions of the perturbation limit, as seen in Fig. 2. Sub-
sequently, strong nonlinearity takes over and the contour
filaments, leading to the breakdown of the leading order so-
With the position of the point vortex known, the image |ytions. Depending on the positions of the point vortices,
charge parg is determined by Eq69). The evolution of the  fiiamentation can take place on fast or slow time scales.
Kelvin waves is then calculated by evaluating the mode am- 1.4 fast time scale filamentation happens when some of

plitudes, Eqs.(79), up to k= i8.0' we pIc_>t the_ resultlng. the point vortices are very close to the boundary of the vor-
contour deformation in the rotating frame in which the point . :
tex patch. In this case, the image charge part of the contour

vortex in stationary in the leading order approximation. The ) i
comparison with the result of contour dynamics is quite goodi€formationA3(é, ) can be very large. We can estimate the
at early times, as shown in Fig. 2. However, at late times thé"@imum of|\ g from the contribution of the point vortex
contour of the vortex patch steepens and the approximatiorf§at is closest to the boundary of the vortex patcii’Jfand
used in our analysis break down. This is discussed in deta(R'),0) are its circulation and leading order position,
in the next section. respectively, then the contribution i3 is
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I a4l ~ ~ - FIG. 3. Fast time point vortex strength
— No filamentation: the relation between
~— ~ ~ and R/(1—R), whereR is the radial
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a ~ which an initially circular contour fila-
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0)? 0 0 The evolution of this envelope function is determined by the
I'n(RO°—RO cog 4—00))) : P y
5 o7 o o (83)  mode equations of the Kelvin waves, E@9).
47 (1+ Ry’ —2Ry’ cog6—0Oy")) The filamentation of the Kelvin waves on the slow time

scale is tied to the development of a singularity in the enve-
lope function from a smooth initial condition. Since
S bil?/|k| is conserved, mode amplitudes of the Kelvin
rng@ waves cannot become unbounded; therefore, the only way to
4n2(1-RO)" (84)  develop a singularity iny(6, 7 is to excite highk modes and
m form a large gradient.
Therefore, if We argue that the nature of the singularity formation in
x is the same as that in the “pseudoenvelopg’(6, 7),

Ry ~1-\%, (85  which evolves according to the following simple differential

equation:

[see EQ.(69)]. The maximum of the absolute value of the
above quantity is

where £>0 is a constant, then the maximum BB is of
order A1~ ¢>\ sincer<1. In this case, the contour defor- ax'
mation, which is the sum of the Kelvin waves and the image 5, © 2
charge part, will develop a maximum deformation of order

\1~€ within one rotation time of the vortex patch, although WhereU is obtained from Eq(30) by replacing the positions
initially the deformation is of ordek. As a consequence, the ©f the point vortices with their leading order values, i.e.,

I‘m (?X,
U(Q’T)_§ amn) 96 -0

(87)

assumption of the perturbation limit will break down within T, (1-R9 cog 9— 09))

one rotation time of the vortex patch, leading to fast time U(0,7)=2 n — n .
scale filamentation of the contour. Equati@®) is the crite- m 27N (1+ R —2RDY cog - O))

rion for onset of fast time scale filamentation. (88)

We can estimate the value of the constamiith contour  The pseudoenvelope can be decomposed into Fourier modes:
dynamics simulations for the simple case of one point vortex

placed in a iniztially circular vortex patch. For a given circu- (g )= b/ (r)e*?, (89)
lation I'y=4m“\, the position of the point vorteR,, for k
which the contour of the vortex patch filaments tat1

_ ' whereb, is the amplitude of th&th mode. From Eq(87) we
+0.02, is obtained. From several valuesnofnd the corre-

. . -~ obtain
sponding values oR;, we find thaté~0.566, as shown in
Fig. 3. dby . o
If none of the point vortices is close enough to the edge  dr _'% WicqPg (90)

of the vortex patch, the contour does not filament on the fast

time scale. However, it can still filament on a slow time Where

scale. To investigate this possibility, we study the evolution ) | O d_ig-16®

of the “envelope” of the Kelvin waves, defined as W q= —% 95 Rm el 0m", (91

x(6,7)= 2 by (7)ek? (86) The mode equation®@0) are different from the mode equa-
’ &o ¢ ' tions(79), therefore, the details of the pseudoenvelgpare
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o 4k (a>‘ ' : 3 which can be most easily observed if we plot only the High

3 1 mode contributions toe and x’. In Figs. 4c) and 4d), we
plot the parts ofy and ' that include only modes withk|
=30. Although the absolute magnitudes are different, the
two curves are very similar in shape, indicating that the pseu-
doenvelope equation has captured the important kigbu-
pling responsible for filamentation.

Equation(87) is amenable to the method of characteris-

tics. Defining characteristics according to

de T
E: (U(@,T)—%m y (93)

Eq. (87) becomesly’ (6(7),7)/d7=0. We observe from this
equation that the value of’ on a pseudoenvelope point
remains constant for all time. Therefore, the singularity can
form only if the pseudoenvelope points converge within ar-
bitrarily small distances, which makes the gradient of the
pseudoenvelope with respect to the angle very large. If the
angular distancédé(7) between two pseudoenvelope points,
originally separated by a distané&¥, of order unity, come
close to each other within a distance of ord#g\ 7, where
7n>0 is a constant, then the gradient of the pseudoenvelope
will be amplified by a factor of ordex/\7=\1"7>\ since
N<<1. At this point, the pseudoenvelope is not smooth, and a
singularity forms. Equatiori93) shows that the angular po-
sition of a point on the pseudoenvelope evolves according to
a first order differential equation in slow time. This implies
that when two points on the pseudoenvelope converge, their
FIG. 4. Comparison of the envelope of Kelvin waveg,6,t), and the a.‘ngmar dlgtance can only decrease exppnenually in slow
pseudoenvelope;’ (6.t), att=6 for the case of one point vortex with,  ime. We will soon see that such exponential convergence of
=0.272 (i.e., A =0.05 placed at {, 6) = (0.5,0). Initially the vortex patchis boundary points is associated with an attractive fixed point in
circular. Mode equations with-80<k<80 are integrateda) x; (b) x'; (0  the # dynamics of the pseudoenvelope. Therefore, the time

part of y that only include contributions from modes wit|=30; (d) part . at which the singularity forms on the pseudoenvelope can
of x’ that only include contributions from modes witk|= 30. be estimated as follows:

f

N
Joo L

N

, . 50(7)~ 5600 YB~ 5H\", (99
different from the envelopg for the Kelvin waves. How-
ever, for|k|>1, sinceR(®)<1, Egs.(91) and (80) imply or equivalently,
ka q kq>0 7B n
|~ ' _ tg=—~—N"tInn"1. 95
Wk,q 0, kq<0 (92) B )\ ,y ( )

Furthermore, in both cases modes are coupled most effetlere y is a constant, determined from the characteristics of
tively only to nearby modes, i.dq—k| must be small. Thus, Eq. (93) and depending on the dynamics of the point vorti-
the high|k| modes are not effectively coupled to the Ipky  ces.
modes, which presumably behave quite differently fdr Since the nature of singularity formation ynis the same
andy sinceWLyq are quite different fronk W, , for small |k as that iny’, tg is also the time at which the singularity
Therefore, highk| modes are excited in the same way in bothforms in . At this point, our perturbation solution for the
x andy’, and we can hope to understand the development dfelvin waves breaks down, and strong nonlinearity takes
the singularity iny by studying the behavior of', which is  over. We can assume that filamentation follows very quickly
much simpler. after this point, since the gradient is already high, and strong
To illustrate these points, we numerically integrate thenonlinear interaction occurs. Therefoitg, is also the fila-
mode equations fox, Eq. (79), and the mode equations for mentation time for the Kelvin waves in our model.
x', EQ. (90). The calculation is again for the case of one The constanty is an exponent that measures the strength
point vortex with I';=0.05x47?=0.27? placed atR;  of nonlinearity needed for the breakdown of the perturbation
=(0.5,0) in an initially circular vortex patch. We plot in equations. Since its role is similar to that of the exponént
Figs. 4a) and 4b) y andy’ att=6, right before the contour that we previously determined for the case of fast time scale
filaments, in the rotating frame in which the point vortex is filamentation[see the discussion that follows E@5)], we
stationary. As can be seen in the figures, the overall shapessume thay~ £=0.566. Note that the precise value »fs
of y and x' are different. However, there are similarities not important for the scaling dfg with A.
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To show that the above approach is useful for under- 4R sin( 65,
standing the slow time scale filamentation of the Kelvin v= AR (99

waves, we present two simple examples. In both examples,
we study the formation of singularity in the pseudoenve-Therefore,

lopes, and infer from the results the nature of filamentation _

of the Kelvin waves. 0" ()~ 0= (6= O )& 7", (100

__The first exarr;ple Is the case of one point vortex withyhere gy is the initial position of the boundary point. For the
p|rculat|onF1=_4w N placed_ at radial posmoR. .The lead- fixed point between 0 and/2, Eq. (99) shows thaty>0;

ing order solution of the point vortex is very simple, as Weherefore, the boundary points nearby will converge to this
haye shown in the previous section: the radial posmoq .of th,‘?ixed point exponentially in time. This fixed point is the
point vortex does not change, and its angular position igape fixed point. For the other fixed point, which is between

given by Eq.(82). With the motion of the point vortex 3.5 ang 27 Eq.(99) shows thaty<0: therefore, this fixed
known, the equation for the points on the pseudoenvelop(i)oim is unstable.

Eq. (93), becomes These results indicate that for the case of one point vor-

deo’ 2(1-R?) tex placed off thg center qf the vortex patch, there ig always
dr  1+R?-2Rcod0) +Q, (96) one bqundary pomt to which the other boundary p0|r_1ts con-
verge in slow time. Therefore, the perturbation solutions al-
where #'= 60— Q 7, indicating that Eq.(96) is written in a  ways break down in finite timg; . We can estimaté; using
rotating frame, chosen so that the point vortex is stationarfgs.(95), (99), and(97):
[see Eq(82)]. The fixed points;, of Eq. (96) are given by

d#’/d7=0, and the solution is thz)\*lln)\*: 7( ) N1l (10
o2 Y 2R\4—-R?
o RG-R) o
Cos fy) = 2 (97) From the equation above we see that wRds small it takes

. . . a long time to filament the Kelvin waves; on the other hand,
It is easy to see that for allOR<1, the right hand side of when R approaches 1, i.e., the point vortex approaches the

the above equation is always positive and smaller than .lboundary of the vortex patch, the filamentation time is small.

Therefore, the equation always has two fixed points, one I3, ; ; ; i
: owever, Eq.(101) is only valid provided thatg>1; oth-
between 0 andr/2, the other is betweens32 and 2r. To see %rwise fast time filamentation sets in.

the behavior of the pseudoenvelope points nearby the fixe We have tested Eq101), which is inferred from the
points, we Taylor expand the right hand side of Ef) near singularity formation in the pseudoenvelope, with contour

the fixed point and get dynamics simulations. In the simulations, a point vortex is

d(6’ —6;) , placed aiR and the initial shape of the vortex patch is circu-
dr y(0' = 05y), (98)  Ilar. In Fig. 5, we plot the dependence of the filamentation
time in the simulations witiR=0.5 on\. The figure shows
where that thex ~* In A1 scaling oftg in Eq. (101) is well satisfied.
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In Fig. 6, we plot the dependence of the filamentation time in  dg’ 4(1-R%

the simulations Witzh =0.05(.e., the circulation of the point ar Q+ (1+R?)2-4R%co2(¢')’ (105
vortex isI";=0.27°) on the positionR of the point vortex.

The figure shows that Eq101) agrees qualitatively with the where§’= 60— r. The fixed point of the above equation is

results of the contour dynamics. given by

The second example is the case of two point vortices, (1+R2)2  (1—R%?2
with circulationsT'; =T ,=4m2\, initially placed at R,0) cog(6f,) = —— T (106
and R,7). Evaluating Eqs(71) and (73) for this case, we 4R 1+3R

find that the leading order solution of the positions of thegqr 1~ R>R_=0.44, there are four solutions féF, , two of
point vortices are given by which are stable fixed points. As in the previous example,

RO=R=RY, (102  Taylor expansion of the right hand side of Efj05) near the
stable fixed points reveals exponential convergence of the
0%=0r, 00=r+Qr, (103 pseudoenvelope points to the fixed points with
where 16R?(1—R*)sin(26f,) 10
1+3R* Y [(1+R?)?—4RZcod(20]) 2 (107
TRA(1-RY” (104

Because of symmetryy is the same for the two stable fixed

In other words, the point vortices are in equilibrium in the points. As in the previous example, the pseudoenvelope de-
rotating frame with angular frequencyz2-\(). Therefore, velops singularity at timeég, which can be inferred as the
the equation of motion for the envelope points, E§3), time at which the Kelvin waves filament. We can estintate
becomes using Eqgs.(95), (107), and(106):

29(1—RHZ2R*\ "1Ina?
thgwllnvl— n )

= . 108
(1+3R% J(— 1+4R?*+5R*+4R%)(1-4R?+ 11R*— 4R5) (109

For R<R.=0.44, there is no solution fofg, and, therefore, of A"*InA~%, on R for several\. The initial shape of the

there is no fixed point for the pseudoenvelope points to concontour is circular. As we can see, thétIn\1 scaling of

verge to. This suggests that the slow time scale filamentatioty, , suggested by Eq108), works quite well forR<0.7, as

of the Kelvin waves is suppressed fB<Rc. indicated by the coincidence of the scaled filamentation
Contour dynamics is again used to verify these resultstimes for different values ok. For R>0.7, the scaling does

In Fig. 7 we have plotted the results of contour dynamics fomot work well for relatively large\. This is because aR

the dependence of the filamentation time, scaled by a factajoes close to the edge of the vortex patch, the fast time

100
10-1 L
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k=
71077
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FIG. 6. The dependence of the filamentation tigen the positiorRofthe ~ FIG. 7. Dependence of filamentation tifigon R for the case of two point
point vortex. The point vortex has a circulatidh =0.05x 47%=0.272, vortices with equal circulations#°\ initially placed at ¢,6)=(R,0) and
and is placed initially atr(, §) = (R,0) in a circular vortex patch. The symbol (r,6)=(R,m). The shape of the vortex patch is initially circular. The data
() indicates the results of the contour dynamics simulation, and the solidor five values of\ are presented by the symbols, witg scaled by
line is the prediction inferred from the evolution of the pseudoenvelope, Eq\ ~* In AL The solid line is the prediction inferred from the evolution of the
(102. pseudoenvelope, E¢108), scaled by~ InA~%.
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filamentation, as discussed in the beginning of this sectionyithin one rotation period of the patch. This fast filamenta-
takes over and the Kelvin waves filament within one rotationtion was found to occur when a vortex is on the ordeh bf

of the vortex patch. FOR<R_., the filamentation times in- from the patch edge, wité~0.566 determined from contour
crease dramatically aR decreases, indicating the suppres-dynamics simulations.

sion of the slow time filamentation for smd® The depen- On the other hand, when the vortices are far from the
dence oftg on R agrees qualitatively with the formula given patch edge, flamentation occurs on the slow time scale. Us-
by Eq.(108), as in the first example. ing an analysis based on a novel pseudoenvelope formulation

The two examples we have discussed above show thatf the slow-time nonlinear dynamics of the patch, we found
dynamics of the slow time filamentation of the Kelvin wavesthat filamentation occurs when perturbations on the patch
can be understood from the singularity formation in the pseusteepen as they are attracted to fixed points whose locations
doenvelopey’. These examples confirm that the filamenta-are determined by the point vortex positions. The time re-
tion of the Kelvin waves happens due to the excitation ofquired for filamentation was shown to scaleas! In 1.
high k modes, and the filamentation tinig scales with\ as  This scaling has been verified in recent experiménts.

shown in Eq.(95). They also show that dependence gion We then studied the slow filamentation time scale in
the dynamics of the point vortices can be qualitatively de-more detail for two cases: a single point vortex, and two
duced from the dynamics of'. point vortices in equilibrium positions. For the first case, we

The use of the pseudoenvelope greatly simplifies thdound that the slow time scale filamentation of the vortex
study of the slow time scale filamentation of the Kelvin patch always occurs, with the expected time scale, given by
waves. However, when the point vortices are in generic poEq.(102). For the latter case, we found that the filamentation
sitions, the analysis of the slow time filamentation of thecan only happen when the radial position of the point vorti-
Kelvin waves becomes quite complicated since the dynamicses is greater thaR.= 0.44, with a time scale given by Eg.
of the point vortices are chaotic in most cases. So far, wg108). Contour dynamics simulations suggest that in the gen-
have not been able to work out the conditions for slow timeeral case of many point vortices moving chaotically, the fila-
filamentation for the most general initial positions of the mentation of the vortex patch resembles the case of one point
point vortices. Contour dynamics simulations seem to sugvortex. In future work, this should be investigated in more
gest that the slow time filamentation of the Kelvin waves indetail with both theory and simulations.
the most general cases resembles that of a single point vortex In this paper the patch was given a uniform vorticity.
placed at the center of charge of the point vortices, off theHowever, in any real system the vorticity must fall smoothly
center of the vortex patch, as studied in the first exampleto zero at large distances from the center of the patch. This
Also, the suppression of the slow time filamentation whencould cause spatial Landau damping of the Kelvin waves,
the point vortices are clustered near the center of the vortewhich may suppress filamentation. The influence of spatial
patch, as studied in the second example, seems to hold irariation in the background on the dynamics will be the sub-
general. These numerical results should be investigated moject of future work.
fully in future studies. Finally, a few words about late-time behavior of the sys-
tem. Our analysis breaks down after the patch filaments. The
complex nonlinear processes responsible for subsequent
mixing and stretching of the filamentary structures, and the

In this paper, we have studied the dynamics of pointeffect of this mixing on the motion of the point vortices, are
vortices inside a nearly circular vortex patch. We first de-beyond the scope of this paper. However, preliminary work
rived general nonlinear equations of motion for the pointusing vortex-in-cell simulations indicates that the filamenta-
vorticies and the contour of the vortex patch. Next, we Tay-tion eventually leads to chaotic and irreversible mixing of the
lor expanded these equations in powers of the point vortegntire vortex patch as the edge contour is mixed into the
strength\, defined as the ratio of the average circulation ofinterior of the patci® and that this mixing can occur even
the point vortices to the circulation of the patch. We thenfor the simplest possible case of a single point vortex inside
performed a two time scale analysis of the resulting nonlinthe patch. Thus, this relatively simple system displays many
ear dynamics. The fast scale was determined by the fresf the features of more complex physical systems that in-
quency of Kelvin waves on the patch, and the slow timevolve interactions between vortices and extended vorticity
scale was determined by the slow motion of the point vorti-regions, such as atmospheric cyclones interacting with zonal
ces in their mutual velocity fields as well as the field of theflows, eddies interacting with oceanic currents, vortex crystal
patch. We showed that in the rotating frame of the vortexexperiments, etc. It is hoped that future work on the chaotic
patch, the slow time dynamics of the point vortices is equivadynamics of this simple point vortex/patch system will pro-
lent to that of point vortices inside a circular free-slip bound-vide more useful insights into the complex interplay between
ary. The Kelvin waves on the vortex patch cause the poinstrong vortices and a background vorticity regfén.
vortices to oscillate on the fast time scale around their slow
time scale trajectory.

_ We also showeo_l that_the Ke_lvin waves break ir_l finite A\cKNOWLEDGMENTS
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V. DISCUSSION
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APPENDIX

Here we outline the proof that the sum
8m\%3,|b|?/|K| is the self-energy of the Kelvin waves in

the rotating frame. We first derive an expression for the an;

gular momentuni of the patch:
1 (2w 1+e
- —f daf drdmrs
2J)o 0
2

dfe—3w
0 0

L

2m

=—7m?-27 doe?+0(\3)

27
Lo—2m | dAe’+0(N\3),
0

(A1)

where in the third line we have used E®4), and where
Loz - 772
patch. Replacing by its Fourier series, Eq43), the angular
momentumL =L —L, due to the contour deformation is
found to be

L=

472 |l (A2)
k#0

correct toO(\?).

Point vortex dynamics within a background 691
|by? IViI?
H.—2xL, )=87\2 +8mN2D, —r.
(He o kzo K| <0 4772|k|
(A6)

n Eqg. (A6), the first term is the self-energy of the Kelvin
waves; the second term is that of the image charge.
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